450 research outputs found

    Electron energy loss spectroscopy with parallel readout of energy and momentum

    Full text link
    We introduce a high energy resolution electron source that matches the requirements for parallel readout of energy and momentum of modern hemispherical electron energy analyzers. The system is designed as an add-on device to typical photoemission chambers. Due to the multiplex gain, a complete phonon dispersion of a Cu(111) surface was measured in seven minutes with 4 meV energy resolution

    The Neverout March : and Two step

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2001/thumbnail.jp

    Parental presence at induction of anaesthesia: who benefits?

    Get PDF
    No Abstract. Southern African Journal of Anaesthesia and Analgesia Vol. 12(1) 2006: 2

    Effective mass in quasi two-dimensional systems

    Full text link
    The effective mass of the quasiparticle excitations in quasi two-dimensional systems is calculated analytically. It is shown that the effective mass increases sharply when the density approaches the critical one of metal-insulator transition. This suggests a Mott type of transition rather than an Anderson like transition.Comment: 3 pages 3 figure

    Dynamic polarization of graphene by moving external charges: random phase approximation

    Full text link
    We evaluate the stopping and image forces on a charged particle moving parallel to a doped sheet of graphene by using the dielectric response formalism for graphene's π\pi-electron bands in the random phase approximation (RPA). The forces are presented as functions of the particle speed and the particle distance for a broad range of charge-carrier densities in graphene. A detailed comparison with the results from a kinetic equation model reveal the importance of inter-band single-particle excitations in the RPA model for high particle speeds. We also consider the effects of a finite gap between graphene and a supporting substrate, as well as the effects of a finite damping rate that is included through the use of Mermin's procedure. The damping rate is estimated from a tentative comparison of the Mermin loss function with a HREELS experiment. In the limit of low particle speeds, several analytical results are obtained for the friction coefficient that show an intricate relationship between the charge-carrier density, the damping rate, and the particle distance, which may be relevant to surface processes and electrochemistry involving graphene.Comment: 14 pages, 10 figures, accepted for publication in Phys. Rev.

    Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics

    Get PDF
    We theoretically investigate the interband transitions and quantum kinetics induced by light carrying orbital angular momentum, or twisted light, in bulk semiconductors. We pose the problem in terms of the Heisenberg equations of motion of the electron populations, and inter- and intra-band coherences. Our theory extends the free-carrier Semiconductor Bloch Equations to the case of photo-excitation by twisted light. The theory is formulated using cylindrical coordinates, which are better suited to describe the interaction with twisted light than the usual cartesian coordinates used to study regular optical excitation. We solve the equations of motion in the low excitation regime, and obtain analytical expressions for the coherences and populations; with these, we calculate the orbital angular momentum transferred from the light to the electrons and the paramagnetic and diamagnetic electric current densities.Comment: 11 pages, 3 figure

    Friction force on slow charges moving over supported graphene

    Full text link
    We provide a theoretical model that describes the dielectric coupling of a 2D layer of graphene, represented by a polarization function in the Random Phase Approximation, and a semi-infinite 3D substrate, represented by a surface response function in a non-local formulation. We concentrate on the role of the dynamic response of the substrate for low-frequency excitations of the combined graphene-substrate system, which give rise to the stopping force on slowly moving charges above graphene. A comparison of the dielectric loss function with experimental HREELS data for graphene on a SiC substrate is used to estimate the damping rate in graphene and to reveal the importance of phonon excitations in an insulating substrate. A signature of the hybridization between graphene's pi plasmon and the substrate's phonon is found in the stopping force. A friction coefficient that is calculated for slow charges moving above graphene on a metallic substrate shows an interplay between the low-energy single-particle excitations in both systems.Comment: 13 pages, 5 figures, submitted to Nanotechnology for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    Knowledge and expectations of labour among primigravid women in the public health sector

    Get PDF
    Objectives. We analysed knowledge and expectations of the process and pain of labour in primigravidas attending a local midwifery obstetric unit (MOU). It was anticipated that the results of this study could inform the development of interventions aimed at improving the analgesic care of women delivering at primary health care obstetric units. Design. Qualitative analysis of data obtained from in-depth semi-structured interviews. Setting. A Cape Town MOU. Subjects. 30 black African, Xhosa-speaking primigravidas. Outcome measures. An open-ended interview guide was developed. The themes explored included previous painful experiences, knowledge of labour, expectations of and attitudes towards labour pain, and knowledge of biomedical analgesia. Results. Patients were poorly informed about the process and pain of labour. Most women appeared highly motivated concerning their ability to cope with labour. Most expected pain, but had no concept of the severity or duration of the pain, and knew very little concerning methods available for pain relief in labour. Conclusion. Women at this MOU were poorly prepared for the experience of delivery. Antenatal programmes should incorporate sensitive education concerning the process and pain of labour and the methods available to alleviate pain

    A novel high-current, high-resolution, low-kinetic-energy electron source for inverse photoemission spectroscopy

    Full text link
    A high-current electron source for inverse photoemission spectroscopy (IPES) is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6 - 20 eV) at the target. When scaled to the energy resolution, the electron current is an order of magnitude higher than that of previously described electron sources developed in the context of electron energy loss spectroscopy. Surprisingly, the experimentally measured energy resolution turned out to be significantly better than calculated by standard programs, which include the electron-electron repulsion in the continuum approximation. The achieved currents are also significantly higher than predicted. We attribute this "inverse Boersch-effect" to a mechanism of velocity selection in the forward direction by binary electron-electron collisions

    Bent surface free energy differences from simulation

    Full text link
    We present a calculation of the change of free energy of a solid surface upon bending of the solid. It is based on extracting the surface stress through a molecular dynamics simulation of a bent slab by using a generalized stress theorem formula, and subsequent integration of the stress with respect to strain as a function of bending curvature. The method is exemplified by obtaining and comparing free energy changes with curvature of various reconstructed Au(001) surfaces.Comment: 14 pages, 2 figures, accepted for publication in Surface Science (ECOSS-19
    corecore