34 research outputs found

    Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy.

    Get PDF
    BACKGROUND:There is less data available regarding the characteristics of cognitive impairment in patients with amyotrophic lateral sclerosis (ALS) in a population-based series. METHODOLOGY:Patients with ALS incident in Piemonte, Italy, between 2009 and 2011 underwent an extensive neuropsychological battery. Cognitive status was classified as follows: normal cognition, frontotemporal dementia (ALS-FTD), executive cognitive impairment (ALS-ECI), non-executive cognitive impairment (ALS-NECI), behavioural impairment (ALS-Bi), non-classifiable cognitive impairment. We also assessed 127 age-matched and gender-matched controls identified through patients' general practitioners. RESULTS:Out of the 281 incident patients, 207 (71.9%) underwent the neuropsychological testing; of these, 19 were excluded from the analysis due previous conditions affecting cognition. Ninety-one (49.7%) patients were cognitively normal, 23 (12.6%) had ALS-FTD, 36 (19.7%) ALS-ECI, 10 (5.5%) ALS-NECI, 11 (6.0%) ALS-Bi and 11 (6.0%) non-classifiable cognitive impairment, 1 had comorbid Alzheimer's disease. Patients with ALS-FTD were older, had a lower education level, and had a shorter survival than any other cognitive group. Of the nine cases with C9ORF72 mutation, six had ALS-FTD, two ALS-ECI and one was cognitively normal; one of the five patients with SOD1 mutations and one of the five patients with TARBDP mutations had ALS-Bi. CONCLUSIONS:About 50% of Italian patients with ALS had some degree of cognitive impairment, in keeping with a previous Irish study, despite the largely different genetic background of the two populations. The lower educational attainment in patients with ALS-FTD indicated a possible role of cognitive reserve in ALS-related cognitive impairment. ALS-ECI and ALS-NECI may represent discrete cognitive syndromes in the continuum of ALS and FTD

    18F-FDG-PET correlates of cognitive impairment in ALS

    Get PDF
    Objective: To identify the metabolic signature of the various levels of cognitive deficits in amyotrophic lateral sclerosis (ALS) using 18F-2-fluoro-2-deoxy-D-glucose-PET (18F-FDG-PET). Methods: A total of 170 ALS cases consecutively enrolled at the ALS Center of Turin underwent brain 18F-FDG-PET and were classified as displaying normal cognition (ALS-Cn; n 5 94), full-blown frontotemporal dementia (ALS-FTD; n 5 20), executive or nonexecutive cognitive impairment not fulfilling FTD criteria (ALS-Ci; n 5 37), prevalent behavioral changes (n 5 9), or nonclassifiable impairment (n 5 10) according to neuropsychological testing. Group comparisons of 18F-FDG-PET pattern were carried out among the cognitive subgroups. Results: We found a significantly reduced frontal and prefrontal metabolism in ALS-FTD as compared to ALS-Cn, while ALS-Ci showed an intermediate metabolic behavior in frontal cortex, being hypometabolic as compared to ALS-Cn, and relatively hypermetabolic as compared to ALS-FTD. Hypometabolism in frontal regions was associated in all comparisons to hypermetabolism in cerebellum, midbrain, and corticospinal tracts: the more severe the cognitive decline, the larger the size of the cluster and the statistical significance of 18F-FDG uptake differences. Conclusions: This study demonstrated in a large cohort of patients with ALS a continuum of frontal lobe metabolic impairment reflecting the clinical and anatomic continuum ranging from pure ALS, through ALS with intermediate cognitive deficits, to ALS-FTD, and showing that patients with intermediate cognitive impairment display a characteristic metabolic pattern. Since 18F-FDG-PET allows us to estimate the cerebral lesion load in vivo in neurodegenerative diseases, it might be helpful to investigate in ALS its association with neuropsychological testing along the disease course to disclose the early metabolic signature of possible cognitive impairment

    Decellularization of xenografted tumors provides cell-specific in vitro 3D environment

    Get PDF
    In vitro cell culture studies are common in the cancer research field, and reliable biomimetic 3D models are needed to ensure physiological relevance. In this manuscript, we hypothesized that decellularized xenograft tumors can serve as an optimal 3D substrate to generate a top-down approach for in vitro tumor modeling. Multiple tumor cell lines were xenografted and the formed solid tumors were recovered for their decellularization by several techniques and further characterization by histology and proteomics techniques. Selected decellularized tumor xenograft samples were seeded with the HCC1806 human triple-negative breast cancer (TNBC) basal-like subtype cell line, and cell behavior was compared among them and with other control 2D and 3D cell culture methods. A soft treatment using Freeze-EDTA-DNAse allows proper decellularization of xenografted tumor samples. Interestingly, proteomic data show that samples decellularized from TNBC basal-like subtype xenograft models had different extracellular matrix (ECM) compositions compared to the rest of the xenograft tumors tested. The in vitro recellularization of decellularized ECM (dECM) yields tumor-type–specific cell behavior in the TNBC context. Data show that dECM derived from xenograft tumors is a feasible substrate for reseeding purposes, thereby promoting tumor-type–specific cell behavior. These data serve as a proof-of-concept for further potential generation of patient-specific in vitro research models.Grant RTI2018-101708-A-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. Grants RYC2018-025502-I and PRE2018-084542 are funded by MCIN/AEI/10.13039/501100011033 and by ESF Investing in your future. Grant MDM-2017-0720 Maria de Maeztu Units of Excellence Program funded by the Spanish State Research Agency. Grant KK-2019/00093 Elkartek program funded by Basque Government. Grant CICBMG_PhD_03_2021 funded by CICbiomaGUNE and Polymat. Grant CICBMG_PhD_05_2019 funded by CICbiomaGUNE and Polymat. 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation, grant number IN[19]_CMA_BIO_0119. The BBVA Foundation accepts no responsibility for the opinions, statements, and contents included, which are entirely the responsibility of the authors

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique

    No full text
    The interplay between plasmons and excitons in bulk metamaterials are investigated by performing spectroscopic studies, including variable angle pump-probe ellipsometry. Gain functionalized gold nanoparticles have been densely packed through a microfluidic chip, representing a scalable process towards bulk metamaterials based on self-assembly approach. Chromophores placed at the hearth of plasmonic subunits ensure exciton-plasmon coupling to convey excitation energy to the quasi-static electric field of the plasmon states. The overall complex polarizability of the system, probed by variable angle spectroscopic ellipsometry, shows a significant modification under optical excitation, as demonstrated by the behavior of the ellipsometric angles W and D as a function of suitable excitation fields. The plasmon resonances observed in densely packed gain functionalized core-shell gold nanoparticles represent a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic bulk systems for advanced optical materials
    corecore