640 research outputs found

    Interference Phenomena in Medium Induced Radiation

    Full text link
    We consider the interference pattern for the medium-induced gluon radiation produced by a color singlet quark-antiquark antenna embedded in a QCD medium with size LL and `jet quenching' parameter q^\hat q. Within the BDMPS-Z regime, we demonstrate that, for a dipole opening angle Ξqqˉ≫Ξc≡2/q^L3\theta_{q\bar q} \gg\theta_c\equiv {2}/{\sqrt{\hat q L^3}}, the interference between the medium--induced gluon emissions by the quark and the antiquark is suppressed with respect to the direct emissions. This is so since direct emissions are delocalized throughout the medium and thus yield contributions proportional to LL while interference occurs only between emissions at early times, when both sources remain coherent. Thus, for \tqq \gg\theta_c, the medium-induced radiation is the sum of the two spectra individually produced by the quark and the antiquark, without coherence effects like angular ordering. For \tqq \ll\theta_c, the medium--induced radiation vanishes.Comment: 4 pages, 2 figures; Proceedings of the "Quark Matter 2011" conferenc

    Nuclear Modification to Parton Distribution Functions and Parton Saturation

    Full text link
    We introduce a generalized definition of parton distribution functions (PDFs) for a more consistent all-order treatment of power corrections. We present a new set of modified DGLAP evolution equations for nuclear PDFs, and show that the resummed αsA1/3/Q2\alpha_s A^{1/3}/Q^2-type of leading nuclear size enhanced power corrections significantly slow down the growth of gluon density at small-xx. We discuss the relation between the calculated power corrections and the saturation phenomena.Comment: 4 pages, to appear in the proceedings of QM200

    Random walks of partons in SU(N_c) and classical representations of color charges in QCD at small x

    Full text link
    The effective action for wee partons in large nuclei includes a sum over static color sources distributed in a wide range of representations of the SU(N_c) color group. The problem can be formulated as a random walk of partons in the N_c-1 dimensional space spanned by the Casimirs of SU(N_c). For a large number of sources, k >> 1, we show explicitly that the most likely representation is a classical representation of order O(\sqrt{k}). The quantum sum over representations is well approximated by a path integral over classical sources with an exponential weight whose argument is the quadratic Casimir operator of the group. The contributions of the higher N_c-2 Casimir operators are suppressed by powers of k. Other applications of the techniques developed here are discussed briefly.Comment: 51 pages, includes 3 eps file

    Non-linear evolution in CCFM: The interplay between coherence and saturation

    Full text link
    We solve the CCFM equation numerically in the presence of a boundary condition which effectively incorporates the non-linear dynamics. We retain the full dependence of the unintegrated gluon distribution on the coherence scale, and extract the saturation momentum. The resulting saturation scale is a function of both rapidity and the coherence momentum. In Deep Inelastic Scattering this will lead to a dependence of the saturation scale on the photon virtuality in addition to the usual x-Bjorken dependence. At asymptotic energies the interplay between the perturbative non-linear physics, and that of the QCD coherence, leads to an interesting and novel dynamics where the saturation momentum itself eventually saturates. We also investigate various implementations of the "non-Sudakov" form factor. It is shown that the non-linear dynamics leads to almost identical results for different form factors. Finally, different choices of the scale of the running coupling are analyzed and implications for the phenomenology are discussed.Comment: 37 pages, 21 figure

    Prostate MRI: Can we do without DCE sequences in 2013?

    Get PDF
    AbstractMultiparametric MRI (mp-MRI) of the prostate currently provides stable and reproducible performances. The usefulness of dynamic contrast-enhanced (DCE) sequences is currently challenged, as they sometimes only confirm what has already been observed on diffusion-weighted imaging (DWI) and require the additional purchase of a contrast agent. Eliminating these sequences may help accelerate the use of MRI in addition to, or in lieu of, prostate biopsies in selected patients. However, many studies show that these sequences can detect lesions invisible on T2-weighted and diffusion-weighted images, better assess cancer extension and aggressiveness, and finally help detecting recurrence after treatment. We present the various applications of dynamic MRI and discuss the possible consequences of its omission from the current protocol

    HERA data and collinearly-improved BK dynamics

    Get PDF
    Within the framework of the dipole factorisation, we use a recent collinearly-improved version of the Balitsky-Kovchegov equation to fit the HERA data for inclusive deep inelastic scattering at small Bjorken xx. The equation includes an all-order resummation of double and single transverse logarithms and running coupling corrections. Compared to similar equations previously proposed in the literature, this work makes a direct use of Bjorken xx as the rapidity scale for the evolution variable. We obtain excellent fits for reasonable values for the four fit parameters. We find that the fit quality improves when including resummation effects and a physically-motivated initial condition. In particular, the resummation of the DGLAP-like single transverse logarithms has a sizeable impact and allows one to extend the fit up to relatively large photon virtuality Q2Q^2

    Relating the description of gluon production in pA collisions and parton energy loss in AA collisions

    Full text link
    We calculate the classical gluon field of a fast projectile passing through a dense medium. We show that this allows us to calculate both the initial state gluon production in proton-nucleus collisions and the final state gluon radiation off a hard parton produced in nucleus-nucleus collisions. This unified description of these two phenomena makes the relation between the saturation scale QsQ_s and the transport coefficient q^\hat q more transparent. Also, we discuss the validity of the eikonal approximation for gluon propagation inside the nucleus in proton-nucleus collisions at RHIC energy.Comment: 18 pages, 3 figure

    Thermalization and the chromo-Weibel instability

    Get PDF
    Despite the apparent success of ideal hydrodynamics in describing the elliptic flow data which have been produced at Brookhaven National Lab's Relativistic Heavy Ion Collider, one lingering question remains: is the use of ideal hydrodynamics at times t < 1 fm/c justified? In order to justify its use a method for rapidly producing isotropic thermal matter at RHIC energies is required. One of the chief obstacles to early isotropization/thermalization is the rapid longitudinal expansion of the matter during the earliest times after the initial nuclear impact. As a result of this expansion the parton distribution functions become locally anisotropic in momentum space. In contrast to locally isotropic plasmas anisotropic plasmas have a spectrum of soft unstable modes which are characterized by exponential growth of transverse chromo-magnetic/-electric fields at short times. This instability is the QCD analogue of the Weibel instability of QED. Parametrically the chromo-Weibel instability provides the fastest method for generation of soft background fields and dominates the short-time dynamics of the system.Comment: 8 pages, 4 figures, Invited plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Dilepton low pTp_T suppression as an evidence of the Color Glass Condensate

    Full text link
    The dilepton production is investigated in proton-nucleus collisions in the forward region using the Color Glass Condensate approach. The transverse momentum distribution (pTp_T), more precisely the low pTp_T region, where the saturation effects are expected to increase, is analyzed. The ratio between proton-nucleus and proton-proton differential cross section for RHIC and LHC energies is evaluated, showing the effects of saturation at small pTp_T, and presenting a Cronin type peak at moderate pTp_T. These features indicate the dilepton as a most suitable probe to study the properties of the saturated regime and the Cronin effect.Comment: 10 pages, 8 figures, replaced with the version to appear in Physical Review

    Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.

    Get PDF
    Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells
    • 

    corecore