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Within the framework of the dipole factorisation, we use a recent collinearly-improved version of the 
Balitsky-Kovchegov equation to fit the HERA data for inclusive deep inelastic scattering at small Bjorken x. 
The equation includes an all-order resummation of double and single transverse logarithms and running 
coupling corrections. Compared to similar equations previously proposed in the literature, this work 
makes a direct use of Bjorken x as the rapidity scale for the evolution variable. We obtain excellent fits 
for reasonable values for the four fit parameters. We find that the fit quality improves when including 
resummation effects and a physically-motivated initial condition. In particular, the resummation of the 
DGLAP-like single transverse logarithms has a sizeable impact and allows one to extend the fit up to 
relatively large photon virtuality Q 2.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Derived via systematic approximations within perturbative QCD, the Colour Glass Condensate (CGC) effective theory [1–5] is a powerful 
framework for computing high-energy processes in the presence of non-linear effects associated with high parton densities. There are 
intense ongoing efforts towards extending this effective theory to next-to-leading order (NLO) accuracy, as required by realistic applications 
to phenomenology [6–19]. These efforts refer both to the Balitsky-JIMWLK equations [20–26], which govern the high-energy evolution of 
the scattering amplitudes, and to the impact factors, which represent cross-sections at relatively low energy. The first NLO results, obtained 
more than a decade ago [6–8], refer to the Balitsky-Kovchegov (BK) equation [20,27]. The latter is a non-linear equation emerging from 
the B-JIMWLK hierarchy in the limit of a large number of colours (Nc → ∞). It describes the evolution of the elastic scattering amplitude 
between a colour dipole and a dense hadronic target. Via appropriate factorisation schemes, like the “dipole factorisation” or the “hybrid 
factorisation” [28], the BK equation also governs the high-energy evolution of the cross-sections for processes of phenomenological interest, 
like deep inelastic scattering (DIS) at small Bjorken x, or forward particle production in proton-nucleus collisions.

A few years after the full NLO BK equation was first presented [8], its numerical study in [29] showed that it is unstable, as anticipated 
in [30,31]. Similar problems had been identified, and cured [32–37], for the NLO version of the BFKL equation [38–40] — the linearised 
version of the BK equation, valid for weak scattering. The origin of this difficulty has been clearly identified, both numerically [29] and 
conceptually [31,41]: it is associated with large and negative NLO corrections enhanced by a double “anti-collinear” logarithm, generated 
by integrating out gluon emissions with small transverse momenta (see Sect. 2). Such double-logarithmic corrections spoil the convergence 
of the fixed-order perturbative expansion of the high-energy evolution, unless they are properly resummed to all orders. Refs. [31,41]
proposed two different strategies for resumming this series of double-logarithmic corrections to all orders.

At a first sight, these strategies seemed to be successful, leading to stable evolution equations [41,42] and allowing for good fits 
to the small-x HERA data [43,44]. However, a recent study [45] revealed some inconsistencies in the original analyses in [31,41,43,44]. 
In particular, there was a confusion concerning the meaning of the rapidity variable which plays the role of the evolution time. The 
variable which a priori enters the perturbative calculations at NLO [8] and in the resummed equations proposed in [31,41] is the rapidity 
Y ≡ ln(s/Q 2

0 ) of the dipole projectile, with s the centre-of-mass energy squared and Q 0 a typical transverse momentum scale for the 
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target. It is different from the rapidity η ≡ ln(1/x) of the hadronic target, which is the variable used in DIS (see Sect. 2 for details). When 
translated to this physical variable, the results of the original resummations in [31,41] show a strong scheme dependence, preventing 
any meaningful phenomenological applications [45]. The success of the corresponding fits to the HERA data [43,44] was rather fortuitous 
and can be attributed to several factors: (i) these fits blindly assumed the physical rapidity variable η = ln(1/x) (although this was 
inconsistent with the resummation scheme), (ii) the rapidity interval over which one can probe high-energy evolution is relatively 
limited making it delicate to critically probe the effects of resummation. In other words, even though the fits can hint at an evolution 
being better than another (e.g. via a better χ2, or more physical fit parameters), it remains difficult to draw a firm conclusion.

To overcome these difficulties, Ref. [45] proposed a reorganisation of perturbation theory in which the evolution time is the physical 
rapidity η. This program lead to a new version of “collinearly-improved BK equation”, shown below in Eq. (6). This equation is non-local 
in rapidity. In that sense it looks formally similar to the equation proposed in [31] but these two equations are fundamentally different:
(i) the evolution variable, η, occurring in Eq. (6) is the physical rapidity ln(1/x), and not the rapidity of the dipole projectile; (ii)
the rapidity shift in Eq. (6) accounts for an all-order resummation of double collinear logarithms, and not anti–collinear (see Sect. 2). The 
collinear logarithms are generated by gluon emissions with relatively large momenta. Such emissions are atypical in the context of DIS. 
Moreover, they are partially suppressed by non-linear effects, so their resummation is somewhat less critical. As a consequence, a com-
parison between various resummation prescriptions shows only little scheme dependence [45], at the level of the expected perturbative 
accuracy of the resummed equation.

The evolution equation we use in this work, Eq. (6), actually goes beyond the original proposal from Ref. [45] by additionally including 
a class of DGLAP-like single transverse logarithms (both collinear and anti-collinear) which appears in the NLO BK equation. While in 
principle one can also include [45] the full set of NLO BK corrections in our evolution equation, this is numerically cumbersome (see 
however [42]) and it goes beyond the scope of this Letter. Instead, we directly confront the relatively simple equation (6) with the most 
recent HERA data [46] for inclusive DIS at small Bjorken x ≤ 0.01. This dataset includes more data points as compared to the one used in 
previous fits [43,44].

We use the fits to test the resummation of the aforementioned double logs and single transverse logarithms as well as various pre-
scriptions for the running of the QCD coupling which enters the BK equation. We study two models for the initial condition to the BK 
equation: the simple Golec-Biernat and Wüsthoff (GBW) model [47,48] and a running-coupling version of the McLerran-Venugopalan (MV) 
model [49]. Both models include two free parameters which are fitted to the experimental data. Two additional parameters (leaving aside 
the quark masses that we keep fixed) are associated with our ansatz for the running coupling and with the overall normalisation of the 
DIS cross-section.

With this setup, we find a good overall agreement with the HERA data at small x. Furthermore, it appears that the physically-motivated 
MV model with running coupling is preferred over the GBW model, with the former giving both better χ2 and more reasonable parameter 
values than the latter. As with earlier studies, the fits appear to favour an initial condition for the dipole scattering amplitude with a fast 
and abrupt approach to the unitarity limit. This is the main reason why better fits are obtained with the running coupling version of the 
MV model as compared to its original fixed-coupling version [49]. This finding is also in agreement with the fact that previous fits [50,51]
using the original MV model favoured a modified dependence of the initial amplitude on the dipole size, decreasing like r2γ0 with γ0 > 1. 
Another interesting observation of our fits is that the inclusion of the DGLAP-like single logarithms significantly improves the description 
of the data at large Q 2, allowing for good descriptions up to maximum Q 2 of 400 GeV2.

This Letter is organised as follows. Sect. 2 provides a qualitative and (hopefully) pedagogical summary of the arguments justifying the 
replacement of the original collinear-improved BK equation formulated in terms of the rapidity of the dipole projectile [31,41], by a new 
version formulated in terms of the rapidity of the hadron target, or Bjorken x. (We refer to Ref. [45] for more details.) Sect. 3 discusses the 
main physical consequences of the various resummations on the solution to the collinearly-improved BK equation. Finally, Sect. 4 presents 
the main original results of this paper: the setup and the results for the fits together with their physical discussion.

2. Collinearly-improved BK evolution in the target rapidity

The main difference between our present approach and previous saturation fits to DIS refers to our specific choice of evolution equation 
used to describe the evolution of the dipole S-matrix with increasing energy. More precisely, we use a collinearly-improved version of 
the BK equation — recently proposed in [45] — in which the rapidity variable playing the role of the evolution time is the proton rapidity 
η = ln(1/x), with x the standard Bjorken variable. This contrasts previous studies (see e.g. [8,31,41,43]) where the evolution was formulated 
in terms of the rapidity Y of the dipole projectile. Beyond leading order [20,27], the choice of η over Y has important consequences. To 
make this clear, we first summarise the main findings of [45] which are relevant for the fit to DIS data described in the next section.

Basic kinematics, target and projectile rapidity We use a frame in which the virtual photon, γ ∗ , is an energetic right-mover with (light-cone) 
4-momentum qμ ≡ (q+, q−, q⊥) = (q+, − Q 2

2q+ , 0⊥), whereas the proton target is a left-mover with Pμ = δμ− P− .1 In the high-energy or 
small Bjorken x regime,

x ≡ Q 2

2P · q
= Q 2

2P−q+ � 1 , (1)

the coherence time �x+ 	 2q+/Q 2 of the virtual photon, i.e. the typical lifetime of its quark-antiquark (qq̄) fluctuation, is much larger 
than the longitudinal extent 1/P− of the target. This justifies the use of the dipole picture in which the γ ∗ fluctuates into a qq̄ colour 
dipole long before the collision, which then scatters inelastically off the proton. Via the optical theorem, the total dipole-hadron scattering 
cross-section is related to the S-matrix for the elastic scattering. At high energy, one can work in the eikonal approximation where the 
transverse coordinates x of the quark and y of the antiquark are not affected by the collision.

1 We neglect the proton mass M which is much smaller than all the other scales in the problem, M2 � Q 2 � 2p · q.
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The elastic S-matrix Sx y also depends on the rapidity difference between the dipole and the proton through the high-energy evolution. 
The physical picture of this evolution and its analytical description depend on how the total energy is divided between the (dipole) 
projectile and the (proton) target i.e. upon the choice of the “dipole frame” in which one is working. It is useful to consider the two 
extreme situations: the “target frame”, in which most of the total energy (and hence the whole high-energy evolution) is carried by the 
proton, and the “projectile frame”, where the energy is mostly carried by the dipole (and the high-energy evolution is encoded in the 
dipole wavefunction). Importantly the rapidity variable which represents the “evolution time” for the high-energy evolution, is different in 
these two situations:

target rapidity: η ≡ ln
P−

|q−| = ln
2q+ P−

Q 2 = ln
1

x
(2)

dipole rapidity: Y ≡ ln
q+

q+
0

= ln
2q+ P−

Q 2
0

= ln
1

x
+ ln

Q 2

Q 2
0

= η + ρ (3)

For the target rapidity, the typical gluon from the proton which interacts with the dipole has a longitudinal momentum k− = Q 2/2q+ =
|q−|, and hence a longitudinal extent ∼ 1/k− of the order of the lifetime �x+ of the qq̄ pair. For the projectile rapidity, the softest dipole 
to participate in the collision has a longitudinal momentum q+

0 = Q 2
0 /2P− — i.e. a lifetime 2q+

0 /Q 2
0 equal to the longitudinal extent 1/P−

of the proton —, where the scale Q 0 � Q is the transverse momentum scale for the onset of unitarity (multiple scattering) effects in the 
(unevolved) proton. The two rapidities differ by ρ ≡ ln(Q 2/Q 2

0 ) which is large when Q � Q 0.
The non-linear effects associated with the high gluon density are described differently in the two frames. In the target frame, soft 

gluon emissions occur in the proton wavefunction which is a dense environment. Accordingly, these emissions are modified by non-linear 
effects like gluon recombinations. The non-linear evolution of the dense hadron wavefunction has been computed only to leading order, 
yielding the (functional) JIMWLK equation [21–26]. Conversely, in the dipole frame one views the evolution as successive, soft, gluon 
emissions within the dipole wavefunction, a dilute hadronic system. Gluon emissions from the dipole occur like in the vacuum and non-
linear effects exclusively refer to multiple scattering. This leads to the Balitsky hierarchy (and the BK equation), currently known to NLO 
accuracy [8–12]. Since our purpose in this work is to go beyond LO accuracy, we systematically use the dipole frame in what follows.

Time ordering and collinear improvements in Y (dipole frame) Besides being less suited for applications to DIS, the evolution with Y has a 
more severe conceptual drawback: the typical emissions contributing to this evolution at leading order can violate proper time ordering, 
that is, the condition that the formation time of a daughter gluon be smaller than the lifetime of its parent.2 To understand this, we 
first recall that, when Q 2 � Q 2

0 , the typical emissions associated with the high-energy evolution of the dipole wavefunction are strongly 
ordered both in longitudinal momenta (k+) and in transverse momenta (k⊥):

q+ � k+
1 � k+

2 � · · · � q+
0 , Q 2 � k2

1⊥ � k2
2⊥ � · · · � Q 2

0 . (4)

This corresponds to soft and collinear emissions which yield the dominant, double-logarithmic, contributions proportional to powers of 
ᾱsYρ . However, an explicit calculation of the relevant Feynman graphs shows [41] that this double-logarithmic enhancement only holds 
so long as the gluon lifetimes are ordered as well:

2q+

Q 2
� 2k+

1

k2
1⊥

� 2k+
2

k2
2⊥

� · · · � 2q+
0

Q 2
0

. (5)

This condition reduces the rapidity phase-space available for the evolution from Y to Y − ρ ≡ η. The condition Eq. (5) is already violated 
(due to the emission of daughter gluons with sufficiently soft k⊥) in the LO BK evolution which resums an infinite series in ᾱsYρ , 
instead of the correct series in powers of ᾱs(Y − ρ)ρ . The difference between the two corresponds to an alternating series of double 
“anti-collinear” logarithms proportional to ᾱsρ

2 which spoil the convergence of the perturbative expansion in Y . In particular, the NLO BK 
equation includes the first (negative) contribution proportional to ᾱsρ

2 [8] which makes the evolution unstable [29] and hence unsuitable 
for physical studies.3

To overcome this difficulty, it was originally proposed [31,41] to enforce time-ordering directly in the dipole frame evolution. Two 
“collinearly improved” BK equations have been proposed: in the first [31] the evolution is non-local in rapidity and has the same kernel 
as at LO, while in the second [41] the evolution is local in Y , but both the kernel and the initial condition receive corrections to all orders 
in ᾱsρ

2. Both methods allow for a faithful resummation of the dominant series in powers of ᾱsρ
2, but the subleading terms (proportional 

to powers of ᾱk
s ρ

2 with k ≥ 2) are not under control. At a first sight, both strategies appear to be successful: the respective equations are 
stable [41,42], they can be extended to full NLO accuracy [42], and moreover they allow for good fits to the HERA data for DIS at small 
x [43,44].

Recasting dipole evolution in terms of η A more recent study has revealed that these apparent successes were in fact deceiving [45]. The 
numerical studies in [42–44] have been presented in terms of Y instead of the physical rapidity η = Y − ρ = ln(1/x), and in the DIS fits 
in [43,44], the variable Y has been abusively interpreted as ln(1/x). The correct procedure would require to first transform the results 
from Y to η by a simple change of variables, before attempting a physical interpretation or a fit to the data. When following this correct 
procedure, one finds [45] an unacceptably large resummation-scheme dependence. For example when solved with the same initial condition 

2 Notice that formation times and lifetimes are parametrically the same for this space-like evolution.
3 More generally there is a tower of series of such spurious terms: series appears to correct the time-ordering violation in the previous one. The dominant series includes 

all powers of ᾱsρ
2, the subdominant one, those of ᾱ2

s ρ
2, etc.
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the two “collinearly-improved” BK equations introduced in [31] and [41] yield very different predictions for the evolution in η.4 More 
generally, different choices for the “rapidity shift” in the non-local equation in Y , albeit equivalent to DLA, lead to very different predictions 
for the saturation exponent λs [45]. This strong scheme dependence forbids any physical interpretation of the results. It demonstrates that 
the uncontrolled, subleading, double-logarithmic corrections — which generally differ from one resummation scheme to another — are 
numerically important.

The problem is further complicated by the fact that the resummed BK evolution in Y cannot be formulated as a genuine initial-
value problem. The non-local equation introduced in [31] must be solved as a boundary-value problem (on a line of constant Y − ρ) 
which seriously complicates even numerical studies of the equation. Moreover, even if the local equation with a resummed kernel [41]
does admit an initial-value formulation, the corresponding initial condition must itself be resummed to account for double-logarithmic 
corrections to all orders, a task which appears to be intractable beyond strict DLA.

These difficulties with the evolution in Y can be avoided altogether by using η as an “evolution time” [45]. This choice has some 
obvious virtues in practice: η = ln(1/x) is the right variable to be used in phenomenological studies of DIS and, clearly, a boundary-value 
condition formulated at constant Y − ρ becomes an initial condition for the evolution in η. Most importantly, one can show that the 
evolution in η naturally ensures the proper time ordering of the successive emissions.5

Instead of computing directly the target evolution in η which would be delicate in the presence of saturation, Ref. [45] proposed to 
reformulate the dipole evolution in Y , computed in pQCD, as an evolution in η via the change of variables Y ≡ η + ρ . Such a change of 
variables is unambiguous in perturbation theory and has been used [45] to obtain the NLO BK equation in η from the respective equation 
in Y [8].

Resummation of atypical collinear double logarithms When using η as an evolution variable, the BK equation is not affected by the large 
anti-collinear logarithms that were present in the evolution in Y . This is a consequence of time ordering, Eq. (5), being automatically 
satisfied for the evolution in η. Furthermore, (5) also guarantees that typical anti-collinear emissions — i.e. those strongly ordered in 
transverse momentum according to (4) — automatically satisfy the proper ordering in longitudinal momentum k+ (cf. (4) again).

However, even with the proper time-ordering, the correct ordering in k+ can still be violated by a series of collinear emissions with a 
strong transverse momentum ordering opposite to that of Eq. (4). These violations yield double-logarithmic corrections to the BK kernel, 
starting at NLO (cf. [45]). In principle, this problem is as severe as the one of time-ordering violations in the evolution in Y : these collinear 
logarithms have to be resummed to all orders in the evolution in η, as the anti-collinear were resummed in the evolution in Y . However, 
these collinear emissions, where the daughter gluon has a much larger transverse momentum than the parent one are atypical in the 
context of DIS. One can further show that they are also strongly suppressed by saturation which freezes the evolution for emissions with 
sufficiently soft transverse momentum.

The NLO evolution in η nonetheless has a contribution from collinear logarithms which, albeit suppressed, eventually translates into 
an instability at large-enough rapidity. In practice one would therefore resum it to all orders (see [45]) using a rapidity shift leading to a 
non-local evolution in η (see Eq. (6) below). As for the resummations in Y , this resummation scheme is not unique beyond DLA. But unlike 
what happens with the resummations in Y , the scheme dependence for the resummations in η is reasonably small, in agreement with 
the expected perturbative accuracy of the resummed equations. For example, choosing different resummation schemes (e.g. by varying the 
η shift in (6)), one finds a small impact on the saturation exponents, comparable with missing perturbative contributions of O(ᾱ2

s ).

The collinearly-improved BK equation in η We are finally in a position to present the evolution equation in the target rapidity, η which 
reads

∂ Sx y(η)

∂η
=

∫
d2z

ᾱs(rmin)

2π

(x − y)2

(x − z)2(z − y)2

[
r2

z̄2

]±ᾱs A1 [
Sxz(η−δxz;r)Sz y(η−δz y;r) − Sx y(η)

]
, (6)

where z is the transverse position of the gluon emitted by either the quark or the antiquark. In the large-Nc approximation, implicit 
in (6), this can be viewed as the splitting of the original dipole (x, y) into two daughter dipoles (x, z) and (z, y). The other notations are 
explained below. Compared to the LO BK equation (in η) a few key differences are worth noting:

(i) the use of the one-loop running coupling ᾱs(rmin) with the running scale set by the size rmin of the smallest dipole: rmin ≡
min{|x − y|, |x − z|, |z − y|}. Alternative schemes are discussed in the next section.

(ii) the rapidity shifts in the arguments of the S-matrices for the daughter dipoles ensure the resummation of the leading double 
logarithms associated with the k+ ordering. They are given by

δxz;r ≡ max

{
0, ln

r2

|x−z|2
}

(7)

with r ≡ |x − y|, and similarly for δz y;r . They are non-zero only for emissions in which one of the daughter dipoles is (much) smaller 
than the parent one, in agreement with our earlier discussion about collinear logarithms. Expanding (6) to first non-trivial order in δ
would give the double-logarithmic contribution to the BK kernel at NLO which eventually yields an instability unless properly resummed 
as in (6).

(iii) Eq. (6) also includes the resummation of the first set of single DGLAP logarithms (either collinear, or anti-collinear), via the 
factor 

[
r2/z̄2

]±ᾱs A1 , where z̄ ≡ min{|x − z|, |z − y|}. The number A1 = 11/12 is related to the DGLAP splitting function via the following 
Mellin transform:

4 In particular, they predict widely different values for the saturation exponent λs at large η, see the right panel of Fig. 1 in [41], where even the sign of the deviation 
w.r.t. the LO value appears to be different in the two schemes.

5 In a nutshell, for a gluon of (projectile) rapidity Yk = ln(k+/q+
0 ) and transverse momentum k⊥ , one has ηk ≡ Yk − ρk = ln τk

τ0
with ρk = ln(k2⊥/Q 2

0 ) and τk = 2k+/k2⊥ is 
the gluon lifetime. Ordering in η therefore coincides with ordering in proper time.
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1∫
0

dz zω

[
Pgg(z) + CF

Nc
Pqg(z)

]
= 1

ω
− A1 +O

(
ω,

Nf

N3
c

)
. (8)

The singular piece 1/ω generates the η = ln(1/x) logarithm contributing to the LO BK evolution, while the non-singular piece (−A1)

contributes at NLO and is enhanced by a single transverse logarithm ln(r2/z̄2). The sign in the exponent, ±ᾱs A1, is taken to be plus for 
an anti-collinear emission (r2 < z̄2) and minus for a collinear one, so this factor is always suppressing the evolution.

Eq. (6) has to be solved as an initial value problem, albeit a somehow unusual one due to its non-locality in η. Indeed, since the shift 
introduces a dependence to rapidities smaller than η, if we want to start the evolution at some rapidity η0 we should specify the initial 
condition for η ≤ η0. Our prescription is to assume a constant behaviour in η (see Sect. 9 of Ref. [45]) i.e.

Sx y(η < η0) = S(0)
x y . (9)

With this prescription, Eq. (6) can be solved and used for DIS fits.
A final note concerns the perturbative accuracy of Eq. (6). We have argued that it includes all the NLO corrections enhanced by at 

least one transverse logarithm. Hence, from the viewpoint of a strict weak-coupling expansion, it is accurate up to pure NLO corrections, 
of O(ᾱ2

s ) without any logarithmic enhancement. Furthermore, the resummation-scheme dependence of (6) is also coherent with missing 
O(ᾱ2

s ) terms. It is possible to extend this equation to full NLO accuracy by adding the missing pure ᾱ2
s corrections. The resulting equation, 

which can be found in Ref. [45], is substantially more complex and we postpone its applications to DIS to future work.

3. Illustrating the impact of running coupling and resummation effects

Before turning to the description of inclusive DIS data, it is helpful to briefly illustrate how the various ingredients in the BK equation, 
namely running-coupling (RC) corrections and the resummation of transverse logarithms, affect the evolution in η. For this purpose, we 
choose a homogeneous target, i.e. take Sx y(η) = S(η, r) with r = |x − y|, together with the simple Golec-Biernat–Wüsthoff (GBW) initial 
condition [47,48]: S0(r) = exp(−r2 Q 2

0 ) with Q 2
0 = 1 GeV2. This Gaussian Ansatz does not capture the proper behaviour for r2 Q 2

0 � 1 but 
is enough for illustrating our points in this section.

Let us first discuss running-coupling effects. For the sake of the present discussion, we use

ᾱs(r) = 1

b̄0 ln
[
4/(r2�2)

] , (10)

with b̄0 = 0.75 (corresponding to n f = 3) and � = 0.2 GeV. The Landau pole is avoided by freezing the coupling at the value ᾱsat = 0.67. 
There is some freedom in implementing RC corrections in the BK equation and we consider two different prescriptions: the minimal 
dipole prescription, ᾱs(rmin), where Eq. (10) is evaluated at r = rmin ≡ min{|x − y|, |x − z|, |z − y|} and the BLM prescription (also dubbed 
as “fast apparent convergence” [43]), defined as

ᾱBLM =
[

1

ᾱs(|x− y|) + (x−z)2 − (z− y)2

(x− y)2

ᾱs(|x − z|) − ᾱs(|z − y|)
ᾱs(|x − z|)ᾱs(|z − y|)

]−1

. (11)

Other prescriptions, not studied here, are also possible (see e.g. [6–8]). They all have in common that they reduce to ᾱs(rmin) when one 
of the three dipoles is much smaller than the other two, as one can easily check for ᾱBLM. This minimises the NLO correction to the BK 
equation proportional to the one-loop β-function.

Besides varying the prescription for the running coupling, we also aim to probe the effect of the resummation of transverse logarithms. 
Single logarithms can be switched off by removing the factor 

[
r2/z̄2

]±ᾱs A1 in Eq. (6), while to remove double transverse logarithms we 
set the η shifts, δxz;r and δz y;r , to zero.

In practice, we solve Eq. (6) numerically up to η = 20 and study the saturation exponent defined as

λs(η) ≡ d ln Q 2
s (η)

dη
, (12)

with the saturation momentum Q s(η) numerically obtained from the condition that S(η, r) = 1
2 when r = 2/Q s(η). The rapidity range 

under study is not sufficient to reach the universal asymptotic behaviour but is representative for the actual range covered by the HERA 
data, η � 10.

Our results are presented in Fig. 1 for a fixed-coupling prescription as well as for our two RC prescriptions. In each case we show the 
saturation exponent for the LO BK equation without any transverse logarithm resummation (“LO”, dotted red), when double transverse 
logarithms are resummed (“DL”, dashed green) and when both double and single transverse logarithms are resummed (“DL+SL”, solid 
blue).

The first observation is that running coupling effects have a large impact, reducing the saturation exponent by ∼75% for both RC 
prescriptions at η = 10 and even more at larger rapidities. The effect of resumming large transverse logarithms is smaller but still clearly 
visible: with RC, we see an additional ∼ 10 − 25% reduction coming from the resummation of double logarithms and a ∼ 10 − 20%
reduction coming from single logarithms. (The effect is considerably larger when using a fixed coupling.) The fact that single-log effects 
are almost as large as double-log effects is most likely due to the fact that while the latter are only relevant for large dipole sizes — where 
they are reduced by saturation effects — the former have an impact on both large (collinear) and small (anti-collinear) dipoles.

Furthermore, one sees that, without the resummation of the transverse logarithms, λs is still quite large (e.g. λs(η = 10) = 0.26 for 
rcBK with the BLM prescription). This seems to be still too large to optimally accommodate the small-x HERA data. It also likely explains 
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Fig. 1. The saturation exponent λs(η) extracted from solutions to Eq. (6) with GBW initial condition and with 3 different choices for the QCD coupling: fixed coupling ᾱs = 0.3
(left), RC ᾱs(rmin) (middle), and RC ᾱBLM (right). In each of these 3 cases, we show results corresponding to LO, LO+DL, and LO+DL+SL, respectively (see text for details).

Fig. 2. Top row: the dipole amplitude plotted as a function of the dimensionless quantity r Q s/2. Bottom row: corresponding effective slope γs = ∂ ln(T )/∂ ln(r2). The 3 plots 
correspond to the same configurations as in Fig. 1.

why previous fits based on rcBK [50–53] appeared to prefer another RC prescription, due to Balitsky [6], which predicts smaller values 
for ᾱs .

Beside the saturation exponent which characterises the “speed” of the evolution, it is interesting to look at the form of the amplitude 
itself. Both the initial condition (dash-dotted black) and the amplitude at η = 20 for different degrees of resummation (cf. Fig. 1) are 
shown in Fig. 2, for the same three configurations as in Fig. 1. Results are plotted as a function of the dimensionless ratio r Q s/2 so as to 
better highlight the shape of the dipole amplitude. The bottom part of the plot shows the effective slope

γs(r, η) = ∂ ln(T (r, η))

∂ ln(r2)
. (13)

Two striking features can be observed from these plots. First, the resummations of double and single transverse logarithms have a 
very small impact on the form of the amplitude. Even though a small effect is visible for the fixed-coupling evolution, almost no effect is 
observed with either running-coupling prescriptions. Then, one sees that the evolved amplitude has a less sharp transition between the 
dilute (small-r) and saturation (large-r) regions. This is particularly visible for the effective slope γs which grows very slowly towards 1 at 
small dipole sizes.

4. Fits to the HERA data for inclusive DIS

We now come to our main task which is to describe the HERA data [46] for the inclusive DIS cross-section at x ≤ 0.01.

4.1. The dipole factorisation and the fit set-up

The dipole factorisation for DIS at small x (and at leading order in pQCD) expresses the physical picture in which the virtual photon 
fluctuates into a qq̄ pair with a lifetime much longer than the longitudinal extent of the proton target. The total γ ∗ p cross-section therefore 
factorises as a wavefunction for the γ ∗ → qq̄ splitting and an interaction between the dipole and the proton:
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σ
γ ∗ p
L,T (x, Q 2) =

∑
f

∫
d2r

1∫
0

dz
∣∣�( f )

L,T (r, z; Q 2)
∣∣2

σdipole(η f , r), (14)

where the squared light-cone wavefunctions (below, Q̄ 2
f ≡ z(1 − z)Q 2 + m2

f )

∣∣�( f )
L (r, z; Q 2)

∣∣2 = e2
q
αemNc

2π2
4Q 2z2(1 − z)2K2

0

(
r Q̄ f

)
, (15)

∣∣�( f )
T (r, z; Q 2)

∣∣2 = e2
q
αemNc

2π2

{
Q̄ 2

f

[
z2 + (1 − z)2

]
K2

1

(
r Q̄ f

) + m2
f K2

0

(
r Q̄ f

)}
, (16)

represent the probability that a (longitudinal or transverse) virtual photon splits into a qq̄ colour dipole with transverse size r and 
with “plus” longitudinal momentum fractions z and 1 − z for the quark and antiquark respectively. The sum in Eq. (14) runs over the 
quark flavors and our fit includes contributions from the three light quarks with mu,d,s = 100 MeV and from the charm quark, with 
mc = 1.3 GeV.6 Furthermore, σdipole(η f , r) is the dipole-proton total cross-section, evaluated for a proton (target) rapidity

η f ≡ ln
1

x̃ f
with x̃ f ≡ x

(
1 + 4m2

f /Q 2) . (17)

In principle this cross-section should be computed by integrating the dipole scattering amplitude T = 1 − S over all impact parameters, 
but since the impact-parameter dependence is non-perturbative and not properly encoded in the BK equation, we simply assume, in the 
spirit of a mean field picture, that the proton is a uniform disk of radius R p (treated as a fit parameter): σdipole(η f , r) = 2π R2

p T (η f , r), 
with T (η, r) obtained from numerical solutions to the homogeneous version of Eq. (6).

One peculiar feature about Eq. (14) is the fact that the dipole cross-section is evaluated at the rapidity scale η f = ln(1/x̃ f ), which refers 
to the virtual photon, and not to the dipole. This looks natural from the perspective of the target evolution in k− (recall the discussion 
following Eq. (1)), but it might look less obvious when thinking about the evolution of the dipole. Clearly, the dipole and the virtual photon 
have different rapidities, due to the splitting fraction z, which can be very asymmetric, i.e. z � 1 or 1 − z � 1, especially for a transverse 
photon. We show however in Appendix A that changes in the longitudinal and the transverse phase-spaces associated with the γ ∗ → qq̄
splitting compensate each other and that the use of the photon rapidity η f in (14) is valid.

The quantity we actually fit is the reduced cross-section, related to the γ ∗ p cross-sections (14) by

σred = Q 2

4π2αem

[
σ

γ ∗ p
T + 2(1 − y)

1 + (1 − y)2
σ

γ ∗ p
L

]
. (18)

y is the inelasticity parameter defined through Q 2 = xys, with s the squared centre-of-mass energy of the ep collision.
In order to solve the evolution equation (6), we still need to specify the running coupling prescription and the initial condition. For the 

running of the QCD coupling, we use the one-loop expression

αs(k
2⊥) = 1

bNf ln
(
k2⊥/�2

Nf

) with bNf = 11Nc − 2Nf

12π
, (19)

where the dependence on the number of active flavours N f is made explicit. The value of �5 is determined by imposing αs(M2
Z ) =

0.1181 [54], and �3,4 are fixed by the continuity of αs at the flavour thresholds. We use mc = 1.3 GeV and mb = 4.5 GeV for the charm 
and bottom quark masses. In coordinate space we use

αs(r) = 1

bNf ln
[
4C2

α/(r2�2
Nf

)
] , (20)

where we included a fudge factor Cα , which will be one of the parameters to be fitted to the data. Finally, we freeze αs at a value αsat = 1
to regularise its infrared behaviour.

For the initial condition of the BK evolution, we use two parametrisations, most conveniently written for the dipole scattering amplitude 
T (η, r) ≡ 1 − S(η, r). The first choice corresponds to a modified version of the Golec-Biernat and Wüsthoff (GBW) “saturation model” [47]
(used already in Fig. 1):

T (η0, r) =
{

1 − exp

[
−

(
r2 Q 2

0

4

)p]}1/p

, (21)

where Q 0 and p are parameters to be fitted. The parameter p, not present in the original GBW model, controls the shape of the amplitude 
close to saturation. Our second choice is a running-coupling version of the McLerran-Venugopalan (MV) model [49], called rcMV in the 
following, which reads:

T (η0, r) =
{

1 − exp

[
−

(
r2 Q 2

0

4
ᾱs(r)

[
1 + ln

(
ᾱsat

ᾱs(r)

)])p]}1/p

. (22)

Once again, Q 0 and p are free parameters (and αsat = 1). The other two parameters of the fit are Cα and R p , the proton radius. In practice, 
we restrict p and Cα to values smaller than 4 and 10, respectively. Indeed, the natural value for p in the MV model is p = 1 and it would 
be reassuring that the fits prefer such a value. Similarly, a natural value for Cα should be of order one.

6 We have checked that the quality of the fit remains similar for other mass values.
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Table 1
χ2 and values of the parameters fitted to HERA data.

initial 
condition

RC 
scheme

double 
logs

single 
logs

χ2 per 
data point

parameters

R p [fm] Q 0 [GeV] Cα p

GBW small no no 4.33 0.671 0.414 10 4

yes no 2.05 0.786 0.355 10 4

yes yes 1.18 0.795 0.362 5.46 4

GBW BLM no no 1.88 0.764 0.374 10 4

yes no 1.65 0.888 0.319 6.65 4

yes yes 1.14 0.762 0.377 0.788 4

rcMV small no no 3.89 0.655 0.659 10 4

yes no 1.72 0.757 0.569 10 4

yes yes 1.03 0.772 0.561 5.66 1.76

rcMV BLM no no 1.46 0.742 0.596 10 4

yes no 1.31 0.841 0.500 5.68 4

yes yes 1.01 0.758 0.503 0.897 1.01

Fig. 3. Left: initial conditions obtained from the fit as described in the text. Right: value of the saturation momentum, defined as T (r = 2/Q s(η), η) = 1/2. The experimental 
data points from HERA [46] are shown for comparison.

4.2. Fit results

In Table 1 we quote the results of the fit to the combined HERA data for the reduced cross section [46]. We include in the fit data 
points with x < 0.01 and Q 2 < 50 GeV2. For both initial conditions (GBW and rcMV) we show the results obtained using the two running 
coupling prescriptions (smallest dipole or BLM) in three cases corresponding to different resummations of transverse logarithms: pure LO 
(rcBK) evolution, resumming only double logarithms, or resumming both double and single logarithms.

One can see that the resummation of the double and of the single logarithms are both improving the agreement with the data. This 
is particularly the case for the resummation of single transverse logarithms which not only have a significant impact on the quality (χ2) 
of the fit, but also lead to more physical values for the fit parameters (in particular Cα , for which values much larger than 1 mean that 
the evolution needs to be artificially slowed down by an unnaturally small value of the coupling in order to be compatible with data).7

These two resummations allow to reach values of χ2 per data point of less than 1.2 for all the combinations of initial conditions and 
running coupling prescriptions considered here. We believe (see e.g. the discussion in section 3) that this good agreement with the data 
is largely due to the reduction of the saturation exponent, λs , due to the resummation of transverse logs. A particular consequence is that, 
contrary to some previous rcBK fits, we do not need to use the peculiar Balitsky prescription for the running coupling [6] to obtain a good 
agreement with the data. One notices also that the fit shows a slight preference for the BLM running-coupling scheme which predicts 
slightly smaller saturation exponents compared to the smallest dipole prescription.

In Fig. 3 (left) we show the shape of the initial condition as a function of r for the four fits which take into account the resummation 
of both single and double logarithms. The results look quite similar despite the different functional forms, which is due to the rather 
strong constraints from the data. In the right panel of Fig. 3, we show the saturation scale as a function of x for each of these four fits, 
superimposed over the HERA data points that we use in the fit.

7 For the rcMV initial condition and the BLM running coupling scheme, discarding double-log corrections but including single-log ones even leads to a fit with a χ2 per 
point of 0.98, with reasonable values of all the fit parameters.
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Table 2
Evolution of the fit quality when increasing Q 2

max (in GeV2).

initial 
condition

RC 
scheme

double 
logs

single 
logs

χ2 per point vs. Q 2
max

50 100 200 400

GBW small no no 4.33 4.33 4.22 4.06

yes no 2.05 2.17 2.27 2.24

yes yes 1.18 1.21 1.31 1.39

GBW BLM no no 1.88 1.93 2.04 2.07

yes no 1.65 1.75 1.94 2.01

yes yes 1.14 1.17 1.25 1.32

rcMV small no no 3.89 4.01 3.97 3.90

yes no 1.72 1.86 1.93 1.92

yes yes 1.03 1.04 1.01 1.00

rcMV BLM no no 1.46 1.50 1.50 1.47

yes no 1.31 1.34 1.35 1.33

yes yes 1.01 1.03 1.01 1.00

In Table 2 we show how the fit is affected by including data with Q 2 larger than 50 GeV2. A priori, one would not expect a very good 
agreement with data at such high transverse scales, where DGLAP effects are expected to be essential. Nevertheless one can see that, when 
including the single logarithms resummation, the fit quality remains about the same up to Q 2

max = 400 GeV2 for a rcMV initial condition. 
This is likely due to the fact that, as explained in section 2, these logarithms represent an important subset of the DGLAP contributions (at 
least at small x) and therefore improve the description at large Q 2. Even when resumming the single transverse logarithms, the fit quality 
gets worse when going to larger Q 2 with a GBW-type initial condition (21). This is probably related to the fact that the GBW model does 
not have the correct physical behaviour at large transverse momenta, or small dipole sizes.

Since we take into account the charm contribution to the inclusive reduced cross section σred in Eq. (18), we could also in principle 
compute the charm production cross section σ cc̄

red. In [43] it was found that, after fitting the data for the inclusive cross-section σred , a 
very good χ2/ndf (< 0.7) was also obtained — without further tuning the fit parameters — for the σ cc̄

red data presented in [55]. We believe 
that this was mostly a coincidence since a comparison between the best fits in [43] and the more recent, combined, HERA data for charm 
production [56], with more points and smaller uncertainties, shows a much worse agreement (χ2/ndf > 4). The situation is similar with 
the present fit. This should not be a surprise as the inclusion of heavy flavour data in the saturation fits based on the BK equation is a 
longstanding issue. The resummations considered here are not expected to bring any concrete improvement on this issue, as they are not 
adapted to the inclusion of heavy quarks.

4.3. Positivity of the dipole amplitude’s Fourier transform

In this work we used the initial condition parametrisations (21) and (22) proposed in [43]. As was later shown [57], a drawback of 
these expressions is that their Fourier transforms are not positive-definite, which can lead to unphysical results in momentum space such 
as a negative unintegrated gluon distribution. The original GBW [47] and MV [49] parametrisations are not affected by this issue, however 
we were only able to obtain rather poor fits (with χ2/ndf > 1.4) when using these expressions. A similar discussion applies to the more 
recent MVe form, introduced in [53], which involves an extra parameter ec and reads

T (η0, r) = 1 − exp

[
− r2 Q 2

0

4
ln

(
1

r�
+ ec · e

)]
. (23)

That said, it should be pointed out that the high-energy evolution tends to improve the situation. If we concentrate on our fits 
using the rcMV initial condition, which is physically most appealing, we numerically find that, even though the Fourier transform of the 
initial condition has negativity issues, the evolved amplitude becomes positive after a few units of rapidity, cf. Fig. 4 (left). (Some small 
oscillations remain in an intermediate rapidity range before disappearing at larger rapidities.) This happens because the solution develops 
an effective slope, defined in Eq. (13), which is smaller than 1 even for small r as can be easily seen in the lower row in Fig. 2. This 
should be contrasted to the small-r behaviour of the rcMV initial condition for T (r), which vanishes faster than r2 when r → 0. In fact, 
after evolution, not only S(r) but also T (r)/r2 (whose Fourier transform is proportional to the gluon occupation number in the proton) 
satisfy all the conditions given in [57] which are necessary for a function to have a positive Fourier transform. This is confirmed by the 
numerical results displayed in Fig. 4.

Finding a functional form which has a positive-definite Fourier transform while preserving the good agreement with the HERA data 
would be extremely interesting, as this could open the way towards a unified description (via the dipole factorisation) of inclusive DIS 
and of particle production in “dilute-dense” (ep, e A, pp, p A) collisions. However, this seems to be also very challenging. At this level, it is 
legitimate to ask whether this difficulty solely reflects our inability to imagine versatile enough parametrisations for the initial condition, 
or it rather points towards a deeper problem with the dipole picture in the presence of a running coupling (perhaps similar to the problem 
discussed in [16] in the context of p A collisions). However, addressing such deep issues goes well beyond the scope of the present work. 
Our main goal here was to show that, for a given and physically-motivated initial condition, the use of the collinearly-improved version 
of the BK evolution improves over the standard rcBK dynamics when it comes to a description of the HERA data for inclusive DIS at 
small x.
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Fig. 4. The Fourier transforms S(η, k) ≡ ∫
d2r eik·r S(η, r) (left figure) and W (η, k) ≡ ∫

d2r eik·r [T (η, r)/r2] (right figure), as computed from numerical solutions to Eq. (6)
with the rcMV initial condition and the BLM prescription for the RC. (The values of the free parameters are taken from the last line in Table 1.) The discontinuities in the 
curves corresponding to the initial condition (η = 0) and the early rapidities reflect the negativity problem mentioned in Sect. 4.3.
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Appendix A. On the rapidity phase-space for dipole evolution

Eq. (14) uses the rapidity argument8 η ≡ ln(1/x) = ln(P−/|q−|) which is the logarithmic phase-space for the proton evolution down 
to the “minus” longitudinal momentum |q−| = Q 2/(2q+) of the virtual photon. This might seem odd since it makes explicit reference to 
the (longitudinal and transverse) kinematics of the virtual photon, and not to that of the dipole. One might expect that the dipole-proton 
scattering amplitude T must be evolved over a smaller rapidity interval, since some of the longitudinal phase space is “consumed” to 
produce the splitting of the virtual photon into the qq̄ pair. This issue is particularly important for a transverse photon, since the cross-

section σγ ∗ p
T is dominated9 (at relatively high Q 2) by “aligned jet” configurations, such that z is either very small, or very close to one. 

Moreover, it does not look natural that the dipole amplitude depends on Q 2 (via η); instead, it should depend on the dipole size r2.
We argue here that the simultaneous changes in the longitudinal and the transverse phase-spaces associated with the γ ∗ → qq̄ splitting 

conspire to give a rapidity interval for the evolution of the dipole amplitude which is still equal to ln(1/x). We first observe that the 
difference Ŷ in “projectile” rapidity between the dipole and the proton is fixed by the dipole leg with the smallest “plus” longitudinal 
momentum q̂+ = zminq+ , with zmin ≡ min(z, 1 − z); that is, Ŷ = ln(q̂+/q+

0 ), with q+
0 = Q 2

0 /2P− as before (since this is fully a proton 
scale). The corresponding difference in the “target” rapidity is again obtained as η̂ = Ŷ − ρ̂ , with ρ̂ = ln(Q̂ 2/Q 2

0 ) and Q̂ 2 = 4/r2 the 
natural transverse resolution scale for the dipole. Hence,

η̂ = Ŷ − ρ̂ = ln
q̂+

q+
0

− ln
Q̂ 2

Q 2
0

= ln
zminq+ P−r2

2
= ln

1

x
+ ln

zmin Q 2r2

4
. (A.1)

We finally observe that (i) to the logarithmic accuracy of interest, we can approximate zmin 	 z(1 − z), and (ii) the integral in Eq. (14)
is controlled by values of r such that 4/r2 ∼ z(1 − z)Q 2. Indeed, in the perturbative regime where T ∝ r2, the integral over r “lives” at the 
largest possible values before it is eventually cut off by the exponential decrease of the modified Bessel functions (which exponentially 
vanish when their arguments become larger than one). This discussion implies η̂ 	 η, as anticipated.
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