2,055 research outputs found

    Storage stability of whole and nibbed, conventional and high oleic peanuts (<i>Arachis hypogeae </i>L.)

    Get PDF
    Peanuts are increasingly being used as nibbed ingredients in cereal bars, confectionery and breakfast cereals. However, studies on their oxidative stability in this format are limited. Storage trials to determine the stability to oxidation were carried out on whole and nibbed kernels of conventional (CP) and high oleic (HOP) peanuts, with respect to temperature and modified atmosphere packaging. HOP exhibited the highest oxidative stability, with a lag phase in whole kernels of 12–15 weeks before significant oxidation occurred. HOP also showed higher levels of intrinsic antioxidants, a trolox equivalent antioxidant capacity (TEAC) of 70 mMol equivalence and radical scavenging percentage (RSP) of 99.8 % at the beginning of storage trials, whereas CP showed values of 40 mMol and 81.2 %, respectively. The intrinsic antioxidants at the beginning of these storage trials were shown to affect the peroxide value (PV), where RSP and TEAC decreased, and PV increased. Therefore, in peanuts the processing format (nibbed or whole) had the highest influence on susceptibility of lipid oxidation, highest to lowest importance: processing format &gt; temperature &gt; atmospheric conditions

    ArchEnemy: Removing scattered-light glitches from gravitational wave data

    Full text link
    Data recorded by gravitational wave detectors includes many non-astrophysical transient noise bursts, the most common of which is caused by scattered-light within the detectors. These so-called ``glitches'' in the data impact the ability to both observe and characterize incoming gravitational wave signals. In this work we use a scattered-light glitch waveform model to identify and characterize scattered-light glitches in a representative stretch of gravitational wave data. We identify 27492749 scattered-light glitches in 5.965.96 days of LIGO-Hanford data and 13061306 glitches in 5.935.93 days of LIGO-Livingston data taken from the third LIGO-Virgo observing run. By subtracting identified scattered-light glitches we demonstrate an increase in the sensitive volume of the gravitational wave search for binary black hole signals by 1%\sim1\%.Comment: 30 pages + acknowledgements and references, 13 figure

    Fragment screening reveals salicylic hydroxamic acid as an inhibitor of <em>Trypanosoma brucei</em> GPI GlcNAc-PI de-N-acetylase

    Get PDF
    The zinc-metalloenzyme GlcNAc-PI de-N-acetylase is essential for the biosynthesis of mature GPI anchors and has been genetically validated in the bloodstream form of Trypanosoma brucei, which causes African sleeping sickness. We screened a focused library of zinc-binding fragments and identified salicylic hydroxamic acid as a GlcNAc-PI de-N-acetylase inhibitor with high ligand efficiency. This is the first small molecule inhibitor reported for the trypanosome GPI pathway. Investigating the structure activity relationship revealed that hydroxamic acid and 2-OH are essential for potency, and that substitution is tolerated at the 4- and 5-positions

    Testing Protein Leverage in Lean Humans: A Randomised Controlled Experimental Study

    Get PDF
    A significant contributor to the rising rates of human obesity is an increase in energy intake. The ‘protein leverage hypothesis’ proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity. Our aim was to test the ‘protein leverage hypothesis’ in lean humans by disguising the macronutrient composition of foods offered to subjects under ad libitum feeding conditions. Energy intakes and hunger ratings were measured for 22 lean subjects studied over three 4-day periods of in-house dietary manipulation. Subjects were restricted to fixed menus in random order comprising 28 foods designed to be similar in palatability, availability, variety and sensory quality and providing 10%, 15% or 25% energy as protein. Nutrient and energy intake was calculated as the product of the amount of each food eaten and its composition. Lowering the percent protein of the diet from 15% to 10% resulted in higher (+12±4.5%, p = 0.02) total energy intake, predominantly from savoury-flavoured foods available between meals. This increased energy intake was not sufficient to maintain protein intake constant, indicating that protein leverage is incomplete. Urinary urea on the 10% and 15% protein diets did not differ statistically, nor did they differ from habitual values prior to the study. In contrast, increasing protein from 15% to 25% did not alter energy intake. On the fourth day of the trial, however, there was a greater increase in the hunger score between 1–2 h after the 10% protein breakfast versus the 25% protein breakfast (1.6±0.4 vs 25%: 0.5±0.3, p = 0.005). In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain

    Spontaneous Enhancement of the Stable Power Conversion Efficiency in Perovskite Solar Cells

    Get PDF
    The power conversion efficiency (PCE) of lead-halide perovskite solar cells (PSCs) is reported to increase over a period of days after their fabrication while they are stored in dark. Thus far, effects underlying this spontaneous enhancement are not understood. This work investigates the phenomenon for a variety of multi-cation-halide PSCs with different perovskite compositions and architectures. The observations reveal that spontaneous enhancement is not restricted to specific charge- transport layers or perovskite compositions. The highest PCE observed in this study is the enhanced stable PCE of 19% (increased by 4% absolute). An increased open-circuit voltage is the primary contributor to the improved efficiency. Using time-resolved photoluminescence measurements, initially-present low-energy states are identified that disappear over a storage period of a few days. Furthermore, trap states probed by thermally stimulated current technique exist in pristine PSCs and strikingly decrease for stored devices. In addition, ideality factor approaches unity and X-ray diffraction analyses show a lattice strain relaxation over the same period of time. These observations indicate that spontaneous enhancement of the PSCs is based on a reduction in trap-assisted non-radiative recombination possibly due to strain relaxation. Considering the demonstrated generality of spontaneous enhancement for different compositions of multi-cation-halide PSCs, our results highlight the importance of determining absolute PCE increase initiated by spontaneous enhancement for developing high-efficiency PSCs

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning.Marina Santiago, Elizabeth A. Davis, Tina Hinton, Thomas A. Angelo, Alison Shield, Anna-Marie Babey, Barbara Kemp-Harper, Gregg Maynard, Hesham S. Al-Sallami, Ian F. Musgrave, Lynette B. Fernandes, Suong N. T. Ngo, Arthur Christopoulos, Paul J. Whit

    Anthropogenic Disturbance and Population Viability of Woodland Caribou in Ontario

    Get PDF
    One of the most challenging tasks in wildlife conservation and management is to clarify how spatial variation in land cover due to anthropogenic disturbance influences wildlife demography and long‐term viability. To evaluate this, we compared rates of survival and population growth by woodland caribou (Rangifer tarandus caribou) from 2 study sites in northern Ontario, Canada that differed in the degree of anthropogenic disturbance because of commercial logging and road development, resulting in differences in predation risk due to gray wolves (Canis lupus). We used an individual‐based model for population viability analysis (PVA) that incorporated adaptive patterns of caribou movement in relation to predation risk and food availability to predict stochastic variation in rates of caribou survival. Field estimates of annual survival rates for adult female caribou in the unlogged ( x̄ = 0.90) and logged ( x̄ = 0.76) study sites recorded during 2010–2014 did not differ significantly (P \u3e 0.05) from values predicted by the individual‐based PVA model (unlogged:  x̄ = 0.87; logged:  x̄ = 0.79). Outcomes from the individual‐based PVA model and a simpler stage‐structured matrix model suggest that substantial differences in adult survival largely due to wolf predation are likely to lead to long‐term decline of woodland caribou in the commercially logged landscape, whereas the unlogged landscape should be considerably more capable of sustaining caribou. Estimates of population growth rates (λ) for the 2010–2014 period differed little between the matrix model and the individual‐based PVA model for the unlogged (matrix model  x̄ = 1.01; individual‐based model x̄ = 0.98) and logged landscape (matrix model x̄ = 0.88; individual‐based model x̄ = 0.89). We applied the spatially explicit PVA model to assess the viability of woodland caribou across 14 woodland caribou ranges in Ontario. Outcomes of these simulations suggest that woodland caribou ranges that have experienced significant levels of commercial forestry activities in the past had annual growth rates 0.96. These differences were strongly related to regional variation in wolf densities. Our results suggest that increased wolf predation risk due to anthropogenic disturbance is of sufficient magnitude to cause appreciable risk of population decline in woodland caribou in Ontario. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society

    Selection for Forage and Avoidance of Risk by Woodland Caribou (Rangifer Tarandus Caribou) at Coarse andLocal Scales

    Get PDF
    The relationship between selection at coarse and fine spatiotemporal spatial scales is still poorly understood. Some authors claim that, to accommodate different needs at different scales, individuals should have contrasting selection patterns at different scales of selection, while others claim that coarse scale selection patterns should reflect fine scale selection decisions. Here we examine site selection by 110 woodland caribou equipped with GPS radio‐collars with respect to forage availability and predation risk across a broad gradient in availability of both variables in boreal forests of Northern Ontario. We tested whether caribou selection for forage and avoidance of risk was consistent between coarse (seasonal home range) and fine scales of selection. We found that local selection patterns predicted coarse scale selection patterns, indicating a close relationship between the drivers of selection at both spatial scales

    USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds

    Get PDF
    Ubiquitin-specific protease 6 (USP6) is a deubiquitylase that is overexpressed by chromosome translocation in two human neoplasms, aneurysmal bone cyst and nodular fasciitis. The relevant substrates of this ubiquitin-specific protease are not clear. Here, we identify the Wnt receptor Frizzled (Fzd) as a key target of the USP6 oncogene. Increased expression of USP6 increases the membrane abundance of Fzd, and hence increases cellular sensitivity to Wnts. USP6 opposes the activity of the ubiquitin ligase and tumor suppressor ring finger protein 43 (RNF43). This study identifies a new mechanism for pathological Wnt pathway activation in human disease and suggests a new approach to regulate Wnt activity therapeutically
    corecore