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ABSTRACT One of the most challenging tasks in wildlife conservation and management is to clarify how
spatial variation in land cover due to anthropogenic disturbance influences wildlife demography and long‐
term viability. To evaluate this, we compared rates of survival and population growth by woodland caribou
(Rangifer tarandus caribou) from 2 study sites in northern Ontario, Canada that differed in the degree of
anthropogenic disturbance because of commercial logging and road development, resulting in differences in
predation risk due to gray wolves (Canis lupus). We used an individual‐based model for population viability
analysis (PVA) that incorporated adaptive patterns of caribou movement in relation to predation risk and
food availability to predict stochastic variation in rates of caribou survival. Field estimates of annual survival
rates for adult female caribou in the unlogged (x̄ = 0.90) and logged (x̄ = 0.76) study sites recorded during
2010–2014 did not differ significantly (P> 0.05) from values predicted by the individual‐based PVA model
(unlogged: x̄ = 0.87; logged: x̄ = 0.79). Outcomes from the individual‐based PVA model and a simpler
stage‐structured matrix model suggest that substantial differences in adult survival largely due to wolf
predation are likely to lead to long‐term decline of woodland caribou in the commercially logged landscape,
whereas the unlogged landscape should be considerably more capable of sustaining caribou. Estimates of
population growth rates (λ) for the 2010–2014 period differed little between the matrix model and the
individual‐based PVA model for the unlogged (matrix model x̄ = 1.01; individual‐based model x̄ = 0.98)
and logged landscape (matrix model x̄ = 0.88; individual‐based model x̄ = 0.89). We applied the spatially
explicit PVA model to assess the viability of woodland caribou across 14 woodland caribou ranges in
Ontario. Outcomes of these simulations suggest that woodland caribou ranges that have experienced
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significant levels of commercial forestry activities in the past had annual growth rates <0.89, whereas
caribou ranges that had not experienced commercial forestry operations had population growth rates >0.96.
These differences were strongly related to regional variation in wolf densities. Our results suggest that
increased wolf predation risk due to anthropogenic disturbance is of sufficient magnitude to cause appre-
ciable risk of population decline in woodland caribou in Ontario. © 2020 The Authors. The Journal of
Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.

KEY WORDS apparent competition, boreal, disturbance, forestry, growth rate, model, moose, movement, Ontario,
population viability analysis, predation, survival, wolf, woodland caribou.

Range retraction and population decline characterize the recent
history of many boreal woodland caribou (Rangifer tarandus
caribou) populations across North America (Bergerud 1974,
Schaefer 2003, Wittmer et al. 2005, Vors and Boyce 2009,
Festa‐Bianchet et al. 2011). The most widely supported hy-
pothesis is that these demographic trends are caused by appa-
rent competition among woodland caribou, moose (Alces alces),
and white‐tailed deer (Odocoileus virginianus) through enhanced
rates of predation by gray wolves (Canis lupus) in landscapes
with extensive secondary growth following commercial logging
(Wittmer et al. 2005; DeCesare et al. 2014; Serrouya et al.
2015, 2017, 2019). Moose and deer thrive in early successional
forests following logging, which in turn supports an increased
density of wolves. Woodland caribou subsequently suffer from
apparent competition (Holt 1977) when they blunder into areas
preferentially used by moose and deer and, therefore, heavily
used by wolves (DeCesare et al. 2014; Serrouya et al. 2015,
2017, 2019).White‐tailed deer are relatively uncommon across
the boreal zone of northern Ontario, Canada, occupied by
woodland caribou, whereas moose are widely distributed and
abundant. Previous field studies indicate that habitat use by
wolves in Ontario is concentrated in regenerating conifer and
mixedwood stands heavily used by moose (Cumming and
Beange 1987, Cumming et al. 1994, Bowman et al. 2010,
Kittle et al. 2017), whereas caribou preferentially use mature
conifer stands (Ferguson and Elkie 2004, Hornseth and
Rempel 2016). This suggests that predation risk to caribou
might depend on the proportion of regenerating moose habitat
on a given landscape and its frequency of use by caribou as they
travel across heterogenous landscapes (Cumming et al. 1994,
James et al. 2004).
One way to assess the potential risk of further population

decline is to link estimates of vital rates (typically survival and
reproduction) to a system‐specific demographic model to es-
timate stochastic variation in population growth rates. This
class of models is often referred to as population viability
analysis (PVA; Boyce 1992, Beissinger and McCullough
2002, Morris and Doak 2002, Wittmer et al. 2010).
Population viability analysis models can be based on single
species or a community of interactive species. Populations can
be represented without any structure or with age‐ or size‐
specific parameters. Some PVA models are constructed to
assess the effect of spatial variation in vital rates experienced
by a collection of individuals living in different parts of a
heterogeneous landscape. The latter modeling framework is
often termed an individual‐based PVA (Grimm and Railsback

2005) because demographic variation depends on the portion
of the landscape occupied by different members of the focal
population. Unlike conventional PVA models, individual‐
based models can yield insight into how variation in ecological
conditions experienced by different animals translates into
variation in individual fitness and its aggregate effect on
population growth rates, enhancing the magnitude of demo-
graphic stochasticity due to other causes. Such information
can be useful in exploring the potential effectiveness of al-
ternative land use policies or management interventions
(Lindenmayer et al. 2000, McCarthy et al. 2000).
We used a previously published model of facultative move-

ment by woodland caribou in response to food availability and
predation risk to predict patterns of caribou landscape use
(Avgar et al. 2013, 2015) and their consequent effect on
caribou survival rates for 2 study areas in northern Ontario.
Four central objectives guided our efforts. First, we used the
individual‐based model to predict differences in predation risk
between logged and unlogged study sites and tested those
predictions for 122 adult females equipped with satellite global
positioning system (GPS) radio‐collars. Second, we used the
individual‐based model to evaluate whether the change in
survival rates due to anthropogenic disturbance was of suffi-
cient magnitude to cause significant reduction in population
growth rates. Third, we evaluated whether the distribution of
population growth rates estimated using the individual‐based
model was comparable to the distribution of population
growth rates estimated using conventional matrix projection
models equipped with identical recruitment parameters for
our field study populations. Although not a model validation
because we do not know what the true population change was
over time, this comparison is helpful in assessing whether it
might be defensible to apply the individual‐based model to
assess other landscapes for which we do not have demographic
data. Fourth, we applied the individual‐based model to esti-
mate what proportion of woodland caribou ranges in Ontario
might be at appreciable risk of decline in the near future and
what risk factors are associated with caribou decline. In
combination, these objectives allow us to evaluate the hy-
pothesis that population viability of woodland caribou is
threatened by apparent competition induced by anthropogenic
habitat disturbance.

STUDY AREA

We compared caribou movement patterns and demog-
raphy during 2010–2014 in 2 study areas in northern

2 The Journal of Wildlife Management



Ontario, each exceeding 22,500 km2 in extent (Fig. 1):
Nakina (50°N, 87°W) and Pickle Lake (51°N, 91°W). A
boreal forest matrix with lakes and bogs interspersed
throughout characterized both sites. Upland stands tended
to be dominated by jack pine (Pinus banksiana) and balsam
fir (Abies balsamea) with some deciduous broadleaf trees
(poplar [Populus spp.] and birch [Betula spp.]), whereas
lowland stands were dominated by black spruce (Picea
mariana), eastern white cedar (Thuja occideantalis), and
tamarack (Larix laricina). Predominant wildlife fauna in

our study areas included gray wolves, black bears (Ursus
americanus), moose, and woodland caribou. Topography
in both study sites was consistent with the Canadian
Shield ecoregion, with rolling hills and little change in
elevation across sites (Nakina: 230–459 m; Pickle Lake:
324–475 m). Monthly mean temperature was −19.2°C in
January and 16.9°C in July (Environment Canada:
Geraldton 49°46′N, 86°55′W; 1971–2000). We opera-
tionally defined the summer as 1 May–31 October and the
winter as 1 November–30 April.

Figure 1. Natural and anthropogenic disturbance across Ontario, Canada, 2010. Gray shading represents disturbed areas. Red lines demarcate the zone
within which commercial forestry activities have been permitted. Yellow squares correspond to the Pickle Lake (PL) and Nakina (N) study sites used to
evaluate demography and movement of woodland caribou.
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Our field sites spanned a strong gradient in anthropogenic
disturbance and consequently differed in a number of other
habitat attributes because the more northerly site (Pickle
Lake) was just beyond the provincial limit for commercial
forestry operations, whereas the other field site (Nakina) was
immediately south of that administrative boundary (Fig. 1).
Nakina had experienced considerable amounts of commer-
cial forestry since 1970, whereas Pickle Lake had been ex-
posed solely to natural sources of forest disturbance due to
windthrow, fire, and insect outbreaks.

METHODS

We used extensive ground truthing of each land cover class
from both field study sites (Fig. 2A) to estimate local var-
iation in several key ecological variables, including food
availability (Fig. 2B), moose density (Fig. 2C), and wolf
density (Fig. 2D). Full details of how we derived these
ecological variables and projected them across the landscapes
is provided by Avgar et al. (2015). We provide a brief de-
scription of this undertaking with respect to spatial variation
in the 3 key landscape variables that influence the animal
movement in the individual‐based PVA model: food avail-
ability, moose density, and wolf density.
We operationally defined food availability in the units of

digestible energy/m2 summed across all plant species that
contribute to caribou diets in each land cover type during
the summer and winter. We estimated local spatial variation

in food availability (Fx) at each location x (Fig. 2B) by
multiplying the average standing crop of each plant species
recorded during field sampling during summer (Mallon
et al. 2016) by its proportion in woodland caribou diets in
summer or winter (Thompson et al. 2012, 2015); then we
multiplied this value by energy content and dry matter
digestibility (Avgar et al. 2015).
We estimated the local density of moose (Mx) within each

pixel by multiplying mean moose density across the entire
study site by the resource selection coefficient for the habitat
in pixel x divided by the mean resource selection coefficient
for the entire landscape. We obtained parameters for the
resource selection probability function from aerial transects
flown during mid‐winter across each study site; a detailed
description of methodology is provided in Street et al.
(2015) and Avgar et al. (2015). During winter survey flights,
2 observers searched for moose within a 500‐m strip on
either side of the aircraft. When observers located moose,
the plane circled directly overhead and observers took a
waypoint at the centroid of the circle. We matched each
waypoint with a number of habitat variables and assessed
selection by comparing used and non‐overlapping unused
locations uniformly sampled along the flight transects
(Street et al. 2015). We multiplied probability of use by
estimates of moose density obtained from winter aerial
surveys conducted in each of the 2 study areas (Street et al.
2015) to derive a local estimate of moose density in each

Figure 2. Estimated spatial distribution of critical habitat variables across a broad gradient in anthropogenic disturbance in northwestern Ontario, Canada,
during 2010–2014. (A: land cover classes, B: food abundance, C: moose resource selection probability function, and D: wolf resource selection probability
function). The commercially logged study site centered on the township of Nakina (SE corner of map) and the less disturbed study site centered on the
township of Pickle Lake (NW corner) are shown in red, each with an area= 22,500 km2.
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hexagonal pixel (x̄ moose density in Nakina= 0.046/km2

and Pickle Lake= 0.024/km2).
Female woodland caribou from the Nakina and Pickle

Lake study sites were equipped with GPS radio‐collars
(n= 122) during mid‐winter 2010 and their fates monitored
over the following 3 years, with capture methodology de-
scribed in detail in Avgar et al. (2015) and McGreer et al.
(2015). Animal captures and handling procedures were in
accordance with approved animal care protocols for the
Ontario Ministry of Natural Resources and Forestry (pro-
tocols 10‐183, 11‐183, 12‐183, 13‐183, and 14‐183). When
field teams received mortality signals, they recovered the
radio‐collar and assess if predation was the likely cause of
death based on blood and tissue scattered widely, signs of
struggle, presence and type of bone damage, and a dis-
articulated skeleton. We applied the nonparametric cumu-
lative incidence function estimator method (Kalbfleisch and
Prentice 1980, Heisey and Patterson 2006) to individual
fate data to estimate the relative contributions of predation
versus other sources of mortality for each study population.
We estimated local densities of gray wolves (Wx) from a

combination of aerial counts of pack size and radio‐
telemetry of 49 individual wolves sampled from 34 packs
widely distributed across the Pickle Lake and Nakina study
landscapes; detailed methods are described in Kittle et al.
(2015, 2017) and Avgar et al. (2015). We recorded GPS
fixes every 5 hours and used the set of fixes over a 3‐year
period to estimate the Brownian bridge utilization dis-
tribution (Horne et al. 2007) for each individual. We
multiplied normalized distributions by pack size to arrive at
local estimates of wolf density. We then used these data to
estimate wolf resource selection probability function models
based on the same habitat metrics used for food availability
and moose space use. Multiplication of resource selection
probabilities by mean wolf density estimated across each of
the study landscapes (Nakina x̄ = 0.005/km2, Pickle Lake
x̄= 0.003/km2) produced a spatially explicit estimate of wolf
density in each hexagonal pixel.

Matrix‐Based PVA Model
The matrix‐based PVA model used population‐wide esti-
mates of annual survival of adult and yearling females (S)
and successful offspring recruitment (S × B, where B is birth
rate of female offspring) in each study area to fill the ele-
ments of a Lefkovich matrix (L):
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where Bj= offspring recruitment rate stemming from age
class j, and Sj= annual survival rate of age class j, where
j= 0, 1, and a for new‐born calves, yearlings, and adults.
We used standard matrix algebra identities to estimate the
asymptotic rate of population growth from the largest ei-
genvalue of the Lefkovitch matrix (Fryxell et al. 2014).
Our field data were only sufficient to estimate site‐specific

vital rates for yearling and adult individuals because we did
not radio‐collar calves. We accordingly parameterized the

Lefkovitch matrix model with pregnancy rates for yearling
(43%) and 2‐year‐old individuals (90%) recorded by Parker
(1981) from a field sample taken from the rapidly increasing
George River herd of woodland caribou in Ungava‐
Labrador, Canada. We then set the survival rate of calves in
the matrix model to 30% to yield an asymptotic yearling
recruitment rate of 12% (the maximum ratio of female
yearlings to reproductive‐age females in social groups re-
corded during helicopter counts conducted in mid‐winter).
We used the same yearling recruitment rate for the
individual‐based PVA model, ensuring that it would have a
similar mean level of productivity as the matrix model. We
used the maximum eigenvalue of the Lefkovitch matrix to
estimate the asymptotic annual growth rate (λ; Fryxell et al.
2014). For each of the 10,000 replicates, we incorporated
demographic stochasticity through Monte Carlo simulation
of survival and recruitment events drawn from a binomial
distribution (Wisdom et al. 2000). Computer code used to
estimate the stochastic matrix simulations is provided in
Supporting Information.

Movement Trajectories from the Individual‐Based
Model
Our spatially explicit PVA model had 2 distinct compo-
nents: the first phase was designed to simulate annual
movement trajectories across an inputted landscape and the
second phase predicted a demographic response (e.g., sur-
vived or died) for each for each individual, which was then
scaled up to a population response (e.g., annual survival
rate). Computer code for the movement and demography
simulations is provided in Supporting Information.
In the first phase, we generated simulated movements by

1,000 adult female caribou across heterogeneous landscapes
populated with 0.22‐km2 hexagons whose centroids were
separated by 500 m from the nearest neighboring hexagons,
based on movement parameters derived using the method-
ology described in Avgar et al. (2013) and Avgar et al.
(2015). Geographic information system data clipped to each
hexagon quantified local features of ecological importance,
including local wolf density, moose density, food avail-
ability, roads, streams, and power lines superimposed on 29
land cover types from the Ontario Land Cover Database
(Fig. 2A). This landscape remained constant across all
simulations. The movement model incorporated perceived
variation in resource quality and predation risk as ex-
ponentially decaying functions of distance from the current
location, memory of past experiences at the same locations,
and an overall background expectation of fitness based on
the previous 365 days of movement experience. We used
this movement model as a subroutine to simulate a set of
1,000 individual movement trajectories over 730 days, with
each trajectory starting from the centroid of the study site.
The last 365 days of the simulated trajectory were the only
values used for the individual‐based PVA model. Two years
of simulation were nonetheless required so that simulated
movements during the last 365 days would have the benefit
of memory derived over the course of the previous year
(Avgar et al. 2015). Facultative patterns of movement
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derived from the model resulted in simulated individuals
partially reducing their use of land cover types associated
with pronounced risk of predation (Fig. 3).
We chose to simulate movement from first principles,

rather than simply estimating probabilities of habitat use
from caribou resource selection functions, because local
composition and configuration of habitat have strong
bearing on patterns of habitat selection by woodland caribou
(McGreer et al. 2015), as typically observed in other re-
source selection studies (Beyer et al. 2010). Mechanistic
movement modelling allowed us to estimate how variation
in caribou fitness might be shaped by landscape config-
uration (Semeniuk et al. 2012, 2014). Assessment of the
effect of such variation is a key feature of individual‐based
PVA models needed for application across multiple juris-
dictions for which field data are missing or inadequate for
one reason or another (Semeniuk et al. 2012, 2014).

Survival Prediction from the Individual‐Based Model
In the second component of the individual‐based PVA, we
used the set of 1,000 simulated movement trajectories to
provide a stochastic sample of vital rates that might arise
because of different movement patterns experienced by dif-
ferent individuals. Each caribou alive at the beginning of each
year in the simulated PVA time series was supplied with a
movement path randomly drawn with replacement from the
full set of 1,000 possible trajectories. We then calculated the
subsequent fate of each individual based on the habitat
characteristics experienced over each 5‐hour interval over
365 days. Because individual location was updated in our
movement simulation every 5 hours, the number of time steps
per year (jmax) in the PVA simulation was 1,752 (365 days×
24 hours/day× 1 step/5 hours) and the time unit for each step
of the model= 1/1,752 years= 5 hours.

We combined local estimates of the probability that an
individual yearling or adult caribou encounters a hunting
wolf at each step along the simulated movement path with
an estimate of risk of mortality due to other causes to es-
timate the probability of survival for each individual. We
estimated the probability that a female caribou would be
killed by wolves using a type‐II multi‐species functional
response (Holling 1959):

p
aW

ah C ah M1
,

C M

=
+ +

(1)

where a= the area searched per year by wolves in km2,
W =mean wolf density per km2 averaged across the entire
landscape, hC= the time (in yrs) required by wolves to
handle each caribou prey item encountered, C =mean
woodland caribou population density per km2 averaged
across the entire landscape, hM= the time (in yrs) required
by wolves to handle each moose prey item encountered, and
M =mean moose density per km2 averaged across the entire
landscape.
Messier's (1994) review of several moose‐wolf studies

throughout North America suggested that the maximum
rate of consumption= 12.3 moose/wolf/year. In our for-
mulation, the maximum rate of consumption= 1/hm, where
hm= 1/12.3= 0.081 years. Messier (1994) estimated that
wolf consumption was half its maximum value at a moose
density of M= 0.47 individuals/km2. The maximum rate
of consumption in a Holling type II functional response=
1/hm, so algebraic rearrangement of the functional response
formula yields an estimate of the area of search coefficient
a= 1/hmM= 26.17 km2/year. This value is similar to the
value of a= 33 km2/year used by Serrouya et al. (2015) for a

Figure 3. Simulated movement path by a woodland caribou individual in northwestern Ontario, Canada, in relation to wolf predation risk, based on the
cognitive movement model of Avgar et al. (2015). The color bar indicates relative predation risk due to wolves.
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similar model of multi‐species predation in boreal forest
environments. In the absence of reliable parameter estimates
for wolves feeding solely on woodland caribou in heavily
forested boreal environments, we assumed that the rate of
wolf encounter with caribou would be identical to that
with moose if they occurred at a similar density. Given that
moose outnumbered caribou, the wolf encounter rate with
moose would be substantially higher than that of caribou,
even though the per capita risk would be lower (Fryxell et al.
2014). The estimated handling time for each caribou
(10 days) is a third of the time required to handle a moose
(30 days) based on data recorded in subarctic Alaskan ranges
(Dale et al. 1994: figure 2), similar to the handling time
estimate from Serrouya et al. (2015) of 13 days.
Wolves are assumed to target moose, the predominant prey

in our system, by hunting in particular land cover types in
direct proportion to their attractiveness to moose, as reported
by Kittle et al. (2015, 2017). Our boreal landscapes differed
in the amount of anthropogenic disturbance they had expe-
rienced and consequently the amount and spatial distribution
of early succession forest stands preferentially used by moose.
We accordingly scaled the basic predation rate such that
the probability of a predation event occurring during time

step j was calculated by pj= pRj/R̂, where Rj is the resource
selection coefficient by moose for the land cover type occu-
pied by a caribou individual at time step j (Fig. 4). Scaling the
probability of predation events to behavioral preference
through a coefficient is common practice in behavioral
ecology (Fryxell and Lundberg 1998). Combining the rates of
background mortality (μ) and predation (pj), we calculated

the probability of mortality for individual i during time step j
according to the following formula:

m p1 1 .ij ij
jmax1μ= − ( − − ) / (2)

We calculated the probability that individual i survives
jmax sequential time steps over the course of the year ac-
cording to the following formula:

∏s m1 .i

j

jmax

ij

1

= −
=

(3)

We treated the fate of each simulated caribou individual i
over the course of the year (ψi) as a binary state variable (valued
0 or 1), obtained by comparing the unique survival probability
of that individual against a random number ranging between 0
and 1 (σ) drawn from a uniform distribution:

≤

if s

if s

0

1
.i

i i

i i
ψ

σ

σ
=

>
(4)

Recruitment Prediction from the Individual‐Based
Model
For each simulated individual that survived the year, we
scaled the per capita recruitment of yearlings (y) to the
average level of food availability experienced by a given in-
dividual over the course of the year (Fi) relative to food
availability averaged across the entire study area (F ):

y y F F ,
i max i
= / (5)

where ymax represents the per capita rate of recruitment of
yearlings under excellent environmental conditions (12%
based on the max. yearling/female ratio recorded from
helicopter counts in mid‐winter). The yearling recruitment
rate we used is similar to the exponential rate of increase
(0.11) recorded for the George River woodland caribou herd
in Canada as it recovered from a population crash in the
mid‐1900s (Messier et al. 1988), but it is lower than ex-
ponential rates of increase (x̄ = 0.25) recorded for barren‐
ground caribou (Rangifer tarandus groenlandicus) herds re-
introduced onto Arctic islands and lower still than the
theoretical maximum of 0.31 that would occur if there was
100% pregnancy of each female ≥1 year of age and no
mortality (Heard 1990). We then obtained the reproductive
fate of each agent (ωi) by comparing the probability of
successful recruitment against a random number ranging
between 0 and 1 (ζ) drawn from a uniform distribution:

≤

y

y

0 if or 0

1 if and 1
.i

i i i

i i i

ω
ζ ψ

ζ ψ
=

> =

=
(6)

This procedure allowed us to evaluate the effect of dem-
ographic stochasticity stemming from spatial variation in
forage availability through its effect on the probability of
offspring recruitment and spatial variation in predation risk
through its effect on the probability of survival by each in-
dividual in the population.

Figure 4. Estimated risk of predation for woodland caribou in Pickle Lake,
Ontario, Canada during 2010–2014, in relation to caribou density and local
moose density (M) relative to mean moose density (M ) across the entire
landscape (black line: M=M 2/ , red line: M=M , blue line: M= 2 M× ).
Other parameters were constant for each curve (a= 26.17, hc= 0.028,
hm= 0.081, M = 0.024,W = 0.0031), where a= the area searched per year
by wolves in km2, hC= the time (in yrs) required by wolves to handle each
caribou prey item encountered, hM= the time (in yrs) required by wolves to
handle each moose prey item encountered, andW =mean wolf density per
km2 averaged across the entire landscape.
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By depicting stochastic survival and offspring recruitment
events in this manner, the simulated abundance of wood-
land caribou would be expected to vary stochastically across
different replicates, with a population increase occurring
during Monte Carlo replicates in which individual tra-
jectories led many animals by chance to visit many food‐rich
patches and few predation‐risky patches and decline in
simulation runs in which the opposite occurred:

∑N .t

i

N

i i1

1

t

ψ ω= ++

=

(7)

Hence, our spatially explicit PVA model translated spatial
heterogeneity in food availability and predation risk into
demographic stochasticity mediated by the paths followed by
individuals across the landscape. We ran each of the 10,000
replicates of the spatially explicit PVA for a population of 200
yearling and adult caribou in each of the study areas for a
single year and used these 10,000 replicates to estimate the
distribution of annual growth rates (λt=Nt+1/Nt) one might
expect from logged versus unlogged boreal landscapes. We
chose a caribou population of 200 for our simulations to be
roughly consistent with averaged field estimates of minimum
number alive (x̄ = 172 in Nakina vs. x̄ = 332 in Pickle Lake)
obtained from aerial surveys in our study areas conducted
during 2008–2013.

RESULTS

Survival rates of radio‐collared females differed between sub‐
populations (t= 2.90, P= 0.022), with caribou living in the
commercially logged landscape at Nakina exhibiting an
average annual survival rate of 0.76± 0.034 (SE) compared
with an annual survival rate of 0.90± 0.032 across the much
less disturbed landscape in Pickle Lake (Table 1). This
difference in average survival rates across landscapes was
echoed by estimates for each year of field study. In each
landscape, most recorded mortality events were due to pre-
dation (Fig. 5), with the annual risk of predation mortality
averaging 14% in the logged Nakina landscape and 7% in
the unlogged Pickle Lake landscape. Black bear predation of

adult caribou was much less important than wolf predation
in both of our study sites. Of 25 predation‐related deaths
recorded in Pickle Lake and Nakina, 22 were probable wolf
kills and only 3 were probable bear kills (2 in Nakina vs. 1 in
Pickle Lake).
Although there was substantial overlap in the distributions

of survival predicted by the individual‐based model for
Pickle Lake and Nakina (Fig. 6; P[overlap])= 0.81), the
mean probability of adult survival in Pickle Lake (x̄ = 0.88)
was 9% higher than that for Nakina (x̄ = 0.79). Adult
survival rates predicted by the individual‐based model
were consistent with field estimates in both Pickle
Lake (x̄ = 0.90± 0.032, t= 0.63, P= 0.53 and Nakina
(x̄ = 0.76± 0.034, t= 1.00, P= 0.32).
The stochastic matrix PVA model constructed from ob-

served vital rates in the field indicated that the asymptotic
rate of population change in Pickle Lake (x̄ = 1.01,
SD= 0.022, n= 10,000) was considerably higher than that
in the logged landscape in Nakina (x̄ = 0.88, SD= 0.031,
n= 10,000). Based on the distribution of values of λ pro-
jected from the stochastic matrix (Fig. 7), there was negli-
gible probability that the annual growth rate in Nakina
would be sustainable (P[λ> 1]) < 0.001), whereas the es-
timated growth rate in Pickle Lake would be more likely to
be sustainable (P[λ> 1])= 0.67), albeit with an appreciable
residual risk of decline (P[λ< 1])= 0.33).
Output from the individual‐based PVA model predicted

that the average rate of population increase in the commer-
cially logged Nakina landscape would be 0.89, suggesting
that there is substantial risk of population collapse (P(λ> 1)
< 0.001) if vital rates do not improve (Fig. 7). Output from

Table 1. Survival data for radio‐collared female woodland caribou from
the commercially logged (Nakina) and less disturbed (Pickle Lake) land-
scapes, Ontario, Canada, 2010–2014. We present the minimum number of
individuals at risk for a given mortality event per year (min. number at risk/
event) and the number of individuals (n) that entered into the risk set
per year.

Year x̄ SE 95% CI
Min. number
at risk/event n

Nakina
2010–2011 0.74 0.17 0.47–1.00 5 49
2011–2012 0.83 0.06 0.72–0.95 33 56
2012–2013 0.73 0.08 0.60–0.90 24 44
2013–2014 0.64 0.19 0.36–1.00 5 22
x̄ 0.76 0.03 0.69–0.83
Pickle Lake
2010–2011 0.96 0.03 0.90–1.00 45 53
2011–2012 0.87 0.05 0.77–0.97 38 56
2012–2013 0.86 0.06 0.75–0.98 27 41
x̄ 0.90 0.03 0.83–0.96

Figure 5. Cumulative probability of mortality during 2010–2014 of 122
woodland caribou due to predation and other sources of mortality in the
control (Pickle Lake) and disturbed (Nakina) study sites, Ontario, Canada.
We estimated probability of mortality for each cause of death using the
nonparametric cumulative incidence function estimator approach (Heisey
and Patterson 2006). We modeled cause‐specific hazards using an annual
365‐day time scale (i.e., a recurrent time scale; Fieberg and DelGiudice
2009), with time= 1 set to 1 June, to represent the start of the biological
year for caribou.
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the individual‐based PVA model indicated that populations
of woodland caribou in the unlogged boreal landscape of
Pickle Lake would have an average annual growth rate of 0.98
(Fig. 7). As a result, although reduction risk of wolf predation
due to changes in land cover composition was associated with
substantial improvement in the probability of population vi-
ability (P(λ> 1)= 0.29), there would still be appreciable risk
of decline (P(λ< 1)= 0.71).
The simulated variance in λ for the stochastic matrix

model was lower than that of the individual‐based model for
both Pickle Lake (F= 2.39, P≤ 0.001) and Nakina
(F= 1.52, P≤ 0.001) because stochastic variation in in-
dividual risk induced by differential movement patterns
across a heterogeneous landscape would inevitably lead to
increased variability in population growth rates beyond the
level expected if all individuals had equal probability of
mortality. This can be readily demonstrated by substituting
the mean and variance in both adult survival and offspring
recruitment derived from the individual‐based model into

the stochastic matrix model. This resulted in increased
variance in estimated λ (Nakina: SD= 0.035; Pickle Lake:
SD= 0.030) relative to the values estimated on the basis of a
simple binomial distribution. The fact that the variance in
the fitted version of the stochastic matrix did not match the
individual‐based PVA likely stems from the fact that there is
additional covariation in the landscape features controlling
survival and recruitment, so these demographic parameters
are not independent.
Application of the individual‐based PVA model to 14

management jurisdictions (Fig. 8) across Ontario indicated
that caribou in 7 ranges (James Bay, Kinloch, Missisa,
Ozhiski, Spirit, Sydney, and Swan) had annual rates of
growth exceeding 0.96. Although there is no evidence they
are thriving, they are not severely threatened with imminent
collapse under current conditions. These more northerly
ranges have not experienced appreciable levels of commer-
cial forestry, although they are all subject to natural sources
of landscape disturbance, such as insect outbreaks, wind-
throw, or fire. On the other hand, all 7 of southern ranges
were estimated to have annual rates of growth (λ) < 0.89,
suggesting that these more southerly ranges are considerably
less capable of sustaining viable populations of woodland
caribou under current conditions (Table 2). Not surpris-
ingly, given the structure of the prediction model, mean
population growth rates estimated by the individual‐based
PVA were strongly related to average wolf densities across
caribou ranges (Fig. 9; F1,12= 1,047, P< 0.001, R2= 0.99).

DISCUSSION

Our field results suggest that increased wolf density in the
study site that had received substantial commercial forestry
activity was associated with reduced adult survival rates of
woodland caribou, as predicted by the individual‐based
model. We specifically chose our study landscapes because
they straddle a pronounced gradient in anthropogenic dis-
turbance primarily caused by commercial logging. About a
third of the Nakina site was logged 30–50 years ago, re-
sulting in a higher proportion of mixed forest stands and a
dense network of remnant logging roads compared to the
Pickle Lake landscape. Given their spatial proximity, we
presumed major differences between landscapes had arisen
from their divergent disturbance histories. The logged
landscape (Nakina) had a larger fraction of mixed and de-
ciduous stands than the unlogged Pickle Lake landscape
(Mallon et al. 2016), much higher road density (Kittle et al.
2015), higher density of moose (Street et al. 2015), and
higher population density of wolves (Kittle et al. 2017). We
conjecture that all of these features probably contribute to
some degree to increased predation risk because movement
trajectories of caribou in our system were shaped by spatial
variation in projected moose density, wolf density, and food
abundance (Avgar et al. 2015).
One of the key goals of movement ecology is to clarify how

patterns of space use by mobile organisms as they traverse
heterogeneous landscapes influences demographic parame-
ters, behavioral interactions within and among species, and
population dynamics (Morales et al. 2010, Owen‐Smith

A

B

Figure 6. Stochastic variation in annual probability of survival during
2010–2014 by woodland caribou based on field data for the individual‐
based population viability assessment model simulated 10,000 times for
2 landscapes in northern Ontario, Canada: the unlogged landscape at
Pickle Lake (A) and the commercially logged landscape at Nakina (B).
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Figure 7. Stochastic variation in annual growth rate (λ) during 2010–2014 by woodland caribou based on field data, Ontario, Canada, estimated using the
individual‐based population viability assessment model for the unlogged landscape at Pickle Lake (A) and the commercially logged landscape at Nakina (B)
and using the matrix model for the unlogged landscape at Pickle Lake (C) and the commercially logged landscape at Nakina (D).

Figure 8. Woodland caribou ranges in Ontario, Canada, 2018.
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et al. 2010). Although clearly of central importance to this
rapidly growing field, examples of successful application of
movement modeling at the individual level to understand
population dynamics at a higher level of biological organ-
ization are rare (Morales et al. 2010, Matthiopoulos et al.
2015). This is a matter of considerable practical concern
because many conservation issues hinge on the role of
habitat fragmentation, habitat loss, and their manifold effect
on organismal fitness (Andren 1994, Fahrig 2003). Without
a clear understanding of how organisms respond to patterns
of habitat transformation, loss, or fragmentation across
broad landscapes and their effectiveness in minimizing en-
vironmental hazards, identification of useful conservation
measures for remediation will no doubt prove to be elusive.
Our model suggested that adaptive decision‐making by

individual caribou, demonstrated in the earlier analyses of
McGreer et al. (2015), Avgar et al. (2015), and Viejou et al.
(2018), was insufficient to completely compensate for fun-
damental differences in fitness across sites. A similar pattern

was suggested by DeCesare et al. (2014) in their analysis of
spatial risk of woodland caribou in British Columbia relative
to patterns of habitat selection. Despite the demonstrated
capacity by woodland caribou for adaptive movement, vital
rates in our study sites differed to a demonstrable degree
between sub‐populations. This was particularly the case for
annual survival rates, which varied considerably between the
heavily disturbed Nakina and less disturbed Pickle Lake
landscapes.
Both the individual‐based PVA and stochastic Lefkovitch

matrix outcomes predicted that woodland caribou in the
landscape recovering from commercial forestry operations
several decades ago would have asymptotic population
growth rates well below the level required for persistence
(λ< 1), whereas caribou in the part of the landscape not yet
exposed to commercial forestry show less evidence of rapid
declining (i.e., λ not significantly different from 1). Without
further information on population trend, it is impossible to
tell whether this means that caribou in in the unlogged
landscape (Pickle Lake) were thriving and close to their
carrying capacity or whether caribou in this less disturbed
landscape were in much more gradual decline. Regardless,
caribou in the more disturbed landscape were faring con-
siderably worse, based on the individual‐based PVA and
matrix projection models. Similarity in the outcomes from
the matrix and individual‐based models suggest that both
modeling approaches offer a useful perspective for under-
standing potential threats to woodland caribou populations.
Efforts to develop a sound conservation strategy for

woodland caribou in Ontario have been hampered by a lack
of validated diagnostic tools to predict which caribou herds
are under greatest threat (Ministry of Natural Resources and
Forestry 2014) and a lack of rigorous evaluation of the
relative effectiveness of alternative policy options for re-
mediation (Serrouya et al. 2017, 2019). Viability assessment
of woodland caribou in Ontario ranges on the basis of
critical thresholds for cumulative disturbance (Environment
Canada 2012) has identified several southern ranges as
being at significant risk of decline (Berens, Brightsand,
Kesagami). Our model outcomes corroborate this assess-
ment by Environment Canada (2012) but also identified
several other ranges that have similarly high probability of
decline (Churchill, Discontinuous, Nipigon ranges). Both
perspectives suggest that high levels of anthropogenic dis-
turbance may be incompatible with long‐term viability of
woodland caribou in Ontario. The most secure conservation
measure would be to set aside extensive tracts of boreal
forest with natural patterns of disturbance to sustain viable
caribou sub‐populations (Ministry of Natural Resources and
Forestry 2014). In areas where such conservation measures
are impractical for social, economic, or historical reasons,
there is urgent need to identify effective alternative
solutions.
The most obvious short‐term strategy to counter this

worrisome situation would be through reduction in wolf
density. This could be achieved via many different man-
agement options, including direct culls, incentives for ad-
ditional wolf harvest by licensed trappers, increased harvest

Table 2. Mean and standard deviation of 10,000 annual growth rate (λ)
values estimated using the spatially explicit population viability assessment
model for 14 woodland caribou ranges in Ontario, Canada, 2010–2014.

Range x̄ SD P(λ> 1)

Berens 0.835 0.0419 <0.001
Brightsand 0.850 0.0406 <0.001
Churchill 0.837 0.0406 <0.001
Discontinuous 0.769 0.0431 <0.001
James Bay 0.964 0.0351 0.161
Kesagami 0.887 0.0378 0.002
Kinloch 0.958 0.0349 0.122
Missisa 0.971 0.0343 0.216
Nipigon 0.846 0.0400 <0.001
Ozhiski 0.965 0.0347 0.179
Pagwachuan 0.885 0.0382 0.001
Spirit 0.966 0.0346 0.179
Swan 0.966 0.0341 0.177
Sydney 0.964 0.0348 0.169

3 4 5 6 7 8 9 10

Wolves/km2 10-3

0.75

0.8

0.85

0.9

0.95

1

Figure 9. Mean annual growth rate (λ) by woodland caribou based on
field data recorded during 2010–2014 in relation to wolves/km2 for 14
woodland caribou ranges in Ontario, Canada, estimated using the
individual‐based population viability assessment model.
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of moose combined with wolf control, or habitat mod-
ification to discourage moose and wolf occurrence. As a first
step towards identifying the potential effectiveness of re-
ducing wolf or moose abundance as a management step, we
re‐ran our individual‐based model for the Nakina landscape
and substituted moose and wolf abundance with the levels
recorded in the unlogged Pickle Lake site. The individual‐
based PVA model suggests that reducing wolf abundance in
Nakina to the level seen in the unlogged Pickle Lake
landscape would improve caribou annual growth rates in the
short term from 0.884 to 0.947 (Fig. 10). Reducing wolf and
moose abundance to levels recorded in Pickle Lake would
produce little additional benefit (Fig. 10).
Our conclusions reinforce a growing consensus that pre-

dation is the most pressing demographic challenge facing
woodland caribou in Canada living in boreal landscapes
(Festa‐Bianchet et al. 2011; Serrouya et al. 2017, 2019).
Before the arrival of Europeans, woodland caribou in boreal
ecosystems lived in landscapes dominated by fire as the
primary form of disturbance (Bergerud 1974). The resulting
mosaic of forest stands of varying age created ample op-
portunity for caribou to space themselves out from gray
wolves and black bears, their primary predators (Bergerud
1974; Seip 1992; Courbin et al. 2009, 2014), by migrating
among patches of muskeg for calving and mature upland
coniferous forest during other periods of the year. The same
logic suggests that predators would be maintained at low
densities because of limited prey availability.
In more recent times, however, commercial logging has

displaced fire as the dominant form of landscape disturbance
in boreal ecosystems, with cascading consequences of crucial
importance to caribou. Many boreal forests regenerating
from commercial logging have a large fraction of stands at
an early seral stage, in many cases dominated by broadleaf
deciduous shrub species and poplars and aspen. Such early

successional stands are favored by moose and white‐tailed
deer, supporting both species at much higher densities than
is typical of unlogged forests (Rettie and Messier 1998;
Fisher and Wilkinson 2005; Courbin et al. 2009, 2014;
Bowman et al. 2010). Although white‐tailed deer were not
an important contributor to apparent competition in our
study area, rapid northward expansion of deer populations,
such as that seen in Alberta, Canada (Latham et al.
2011a, b), is to be expected. With an increased prey base,
wolf densities are typically higher in disturbed landscapes
than those that have had little recent disturbance (Bergerud
1974; Kittle et al. 2015; Serrouya et al. 2015, 2017, 2019),
with resultant increases in mortality risk for caribou. As a
territorial species, however, density‐dependent responses by
wolves might be expected to eventually cap their demo-
graphic response to superabundant prey.
The size distribution of harvested forest stands often dif-

fers considerably from that in fire‐dominated systems
(Perera et al. 2004, Fisher and Wilkinson 2005), bringing
caribou into more frequent contact with wolves as they
travel across highly fragmented landscapes (Courbin et al.
2009, 2014; Fortin et al. 2013, 2017), despite the preference
of woodland caribou for habitats infrequently used by
moose, deer, or wolves (Courtois et al. 2008, Fortin et al.
2008, Avgar et al. 2015, McGreer et al. 2015). Unlike fire‐
dominated systems, commercial logging often leaves highly
reticulated networks of roads, which are heavily used by
wolves as they travel across their communal territories
(James and Stuart‐Smith 2000, Kittle et al. 2017, Newton
et al. 2017) and sometimes bringing them into higher than
expected proximity to caribou despite their road avoidance
(Fortin et al. 2013).
There are a number of ways that our individual‐based

model could be improved. Delayed onset of reproduction in
some caribou herds can substantially reduce population
growth rates (DeCesare et al. 2012). Hence, the simplified
transition matrix (3 stages to represent a long‐lived ungulate
species) we have employed could well overestimate asymp-
totic values of λ if significant numbers of females delay the
onset of reproduction beyond their second year of life. In the
absence of more detailed age‐specific estimates of vital rates,
there is no obvious remedy and this remains a potentially
important source of uncertainty in our growth rate projec-
tions. We currently have no reliable field estimates of off-
spring survival or yearling recruitment, so our projections of
population growth rate are hampered accordingly. Setting
calf recruitment to the maximum level recorded during the
study (12%) was also an optimistic choice.
We also cannot be sure that our estimate of background

mortality of adults is not influenced by food availability, al-
though we feel confident that by visiting carcasses as soon as
possible after death that we correctly identified predation
events. We chose to incorporate a simple type‐II multi‐species
functional response largely because there is no empirical evi-
dence that wolves make more complex decisions around diet
breadth and time series data on variation in caribou predation
risk with respect to changes in caribou and moose density is
rudimentary at best in all jurisdictions. At low population

Figure 10. Stochastic variation in annual growth rate (λ) by woodland
caribou based on field data using the individual‐based population viability
assessment model simulated 10,000 times across the commercially logged
landscape at Nakina but assuming that wolf abundance or both wolf and
moose abundance have been reduced to levels seen in the unlogged
landscape at Pickle Lake, Ontario, Canada, 2010–2014.
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densities, Allee effects due to challenges in locating suitable
mates or through depensatory effects on hunting efficiency
could well occur (McLellan et al. 2010).
Our model also does not allow assessment of the effect of

black bear predation. Although field evidence from our study
sites indicated that bear predation on adult caribou was rel-
atively uncommon, studies in other landscapes have demon-
strated substantial effects of bear predation on recruitment of
young caribou (Latham et al. 2011a, b; Rayl et al. 2015,
Leblond et al. 2016). Spatially explicit assessment of bear
predation is undoubtedly an important feature to build into
future generations of our spatially explicit PVA model. It
would probably require massive field effort in its own right,
hence was simply not possible in the current study.
It would also be useful to clarify how patterns of under-

story plant recruitment vary across forest stand types fol-
lowing disturbance and how future patterns of climate
change will influence successional pathways in understory
plants and the effect of future climate change on moose
populations. Such information, coupled with realistic sce-
narios for landscape disturbance due to both natural and
anthropogenic causes, would be needed to reliably assess
long‐term prospects for persistence of woodland caribou
populations. In the meantime, our approach to in-
corporating spatial processes into estimates of population
growth rates provides a useful starting point for discussing
the utility of alternative management scenarios.
Many of these model details could lead to further reduc-

tions in projected growth rates by woodland caribou. As dire
as our model predictions might be, it is accordingly con-
ceivable that we may actually represent an overly optimistic
view of population viability of woodland caribou across
Ontario. In spite of these limitations, our work suggests that
individual‐based, spatially explicit PVA modeling provides a
useful tool to address these challenges. Because spatial var-
iation in food availability and predation risk in our model are
linked with land classes in provincial databases and broad
gradients in wolf and moose abundance are well established
across the province, we have shown that it is possible to
simulate patterns of movement, vital rates, and long‐term
viability of caribou in any boreal landscape in Ontario.
Spatially explicit PVA models such as ours offer a potentially
useful engine for conducting thought experiments to
evaluate alternative conservation or management measures
(Lindenmayer et al. 2000, McCarthy et al. 2000). In the case
of woodland caribou, a short list of possible conservation
candidates might include changes in cut rotation, road de-
commissioning, predator control, and moose and deer har-
vest enhancement. As an example of this approach, we
altered parameter values in our model to demonstrate that
reduction of wolf abundance may be useful in preventing
rapid decline in woodland caribou numbers in a heavily
disturbed landscape. Given the enormous cost of such policy
changes, complex ethical and societal concerns, and logistical
difficulty in modifying ecological interactions across vast
boreal landscapes, such thought experiments represent a
useful intermediate step to evaluate the cost‐effectiveness of
possible changes to landscape management practices.

Balanced against this intriguing potential, spatially explicit
models are particularly data hungry, demanding enormous
amounts of time and energy to estimate variation in fitness
variables across space (Reed et al. 2002). Moreover, any such
model is plagued by fundamental concerns about the accu-
racy and precision of vital rate estimates and meaningful
assessment of their long‐term variability in systems subject
to stochastic environmental variation and long‐term changes
in underlying climatic and biotic variables (Coulson et al.
2001, Reed et al. 2002). We nonetheless submit that there
can be appreciable benefits in understanding and improved
efficiency in evaluating alternate conservation plans provided
by an explicitly spatial perspective on fitness variables that is
well justifiable when the conservation and societal concerns
are as complex as those currently facing woodland caribou in
Canada (Festa‐Bianchet et al. 2011).

MANAGEMENT IMPLICATIONS

Habitat management combined with wildlife harvest poli-
cies to discourage high densities of moose and wolves
are essential components of a robust long‐term plan for
conservation of boreal woodland caribou in Ontario. This
calls for the development of new tools to fully assess the
social, economic, and conservation implications of alter-
native management plans. Such plans might include a wide
range of options, including population control in the short
term combined with longer‐term enhancement of protected
area networks, long‐term cutting rotation, and perhaps even
triage assessment if population viability for woodland car-
ibou is not achievable any other way. In assessing any of
these options, computer simulations like those presented
here can be invaluable in assisting informed discussion
among stakeholders with divergent points of view.
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