216 research outputs found

    South African cycads at risk : aulacaspis yasumatsui (Hemiptera: Coccoidea: Diaspididae) in South Africa

    Get PDF
    The scale insect Aulacaspis yasumatsui is native to Southeast Asia and a major pest of cycad (Cycadales) plants. Due to an increase in worldwide trading of cycads, A. yasumatsui has spread globally and has become a major threat to many cultivated and native cycads worldwide. In this study we report formally, for the first time, A. yasumatsui infesting cycads in South Africa. This scale insect was observed infesting cycads in three provinces in South Africa, namely, Gauteng, KwaZulu-Natal and Limpopo. Its identification was based on morphology and nucleotide sequences of three gene regions. Although more common and damaging on non-native Cycas species, its presence on some native South African Encephalartos species is of concern and effort should be made to control the spread and impact of this pest in the country.The Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) of South Africa and the University of Pretoria.http://reference.sabinet.co.za/sa_epublication/entohttp://www.entsocsa.co.za/Publications.htm2017-03-30am201

    Determination of the Relative and Absolute Configurations of the Female-produced Sex Pheromone of the Cerambycid Beetle Prionus californicus

    Get PDF
    We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10 ng and 10 μg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100 μg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho

    Caledonian hot zone magmatism in the “Newer Granites”: insight from the Cluanie and Clunes plutons, Northern Scottish Highlands

    Get PDF
    Scottish “Newer” Granites record the evolution of the Caledonides resulting from Iapetus subduction and slab breakoff during the Silurian-Devonian Scandian Orogeny, but relationships between geodynamics, petrogenesis and emplacement are incomplete. Laser ablation U-Pb results from magmatic zircons at the Cluanie Pluton (Northern Highlands) identify clusters of concordant Silurian data points. A cluster with a weighted mean 206Pb/238U age of 431.6 ± 1.3 Ma (2 confidence interval, n = 6) records emplacement whilst older points (clustered at 441.8 ± 2.3 Ma, n = 9) record deep crustal hot zone magmatism prior to ascent. The Cluanie Pluton, and its neighbour the ∼428 Ma Clunes tonalite, have adakite-like high Na, Sr/Y, La/Yb and low Mg, Ni and Cr characteristics, and lack mafic facies common in other “Newer Granites”. These geochemical signatures indicate the tapping of batches of homogenised, evolved magma from the deeper crust. The emplacement age of the Cluanie Pluton confirms volumetrically modest subduction-related magmatism occurred beneath the Northern Highlands before slab breakoff, probably as a result of crustal thickening during the ∼450 Ma Grampian 2 event. Extensive new in-situ geochemical-geochronological studies for this terrane may further substantiate the deep crustal hot zone model and the association between Caledonian magmatism and potentially metallogenesis. The term “Newer Granites” is outdated as it ignores the demonstrated relationships between magmatism, Scandian orogenesis and slab breakoff. Hence, “Caledonian intrusions” would be a more appropriate generic term to cover those bodies related to either Iapetus subduction or to slab breakoff

    The impact of forming gas annealing on the electrical characteristics of sulfur passivated Al2O3/In0.53Ga0.47As (110) metal-oxide-semiconductor capacitors

    Get PDF
    This study reports the impact of forming gas annealing (FGA) on the electrical characteristics of sulfur passivated, atomic layer deposited Al2O3 gate dielectrics deposited on (110) oriented n- and p-doped In0.53Ga0.47 As layers metal-oxide-semiconductor capacitors (MOSCAPs). In combination, these approaches enable significant Fermi level movement through the bandgap of both n- and p-doped In0.53Ga0.47 As (110) MOSCAPs. A midgap interface trap density (Dit) value in the range 0.87−1.8×1012 cm−2eV−10.87−1.8×1012 cm−2eV−1 is observed from the samples studied. Close to the conduction band edge, a Dit value of 3.1×1011 cm−2eV−13.1×1011 cm−2eV−1 is obtained. These data indicate the combination of sulfur pre-treatment and FGA is advantageous in passivating trap states in the upper half of the bandgap of (110) oriented In0.53Ga0.47 As. This is further demonstrated by a reduction in border trap density in the n-type In0.53Ga0.47 As (110) MOSCAPs from 1.8×1012 cm−21.8×1012 cm−2 to 5.3×1011 cm−25.3×1011 cm−2 as a result of the FGA process. This is in contrast to the observed increase in border trap density after FGA from 7.3×1011 cm−27.3×1011 cm−2 to 1.4×1012 cm−21.4×1012 cm−2 in p-type In0.53Ga0.47 As (110) MOSCAPs, which suggest FGA is not as effective in passsivating states close to the valence band edge

    Volcanological and environmental controls on the Snowdon mineralization, North Wales, UK: a failed volcanogenic massive sulfide system in the Avalon Zone of the British Caledonides

    Get PDF
    The Snowdon caldera of North Wales is host to base metal sulfide-bearing veins and stockworks, mineralized breccias, disseminated sulfides, and localized zones of semi-massive to massive sulfide, with subordinate magnetite-rich veins. The late Ordovician host volcanic sequence accumulated in a shallow marine, back-arc environment in the Welsh Basin, which forms part of the Avalon Zone of the British and Irish Caledonides. New field evidence, sulfur isotopes, and U-Pb dating indicate that the Snowdon mineralization is genetically and temporally related to Late Ordovician magmatism and caldera formation. It is interpreted to represent volcanogenic pipe-style sulfide mineralization, resulting from focused hydrothermal fluids moving along caldera-related faults and simultaneous dispersal of fluids through the volcaniclastic pile. Sulfur isotope data suggest that, whilst a limited contribution of magmatic S cannot be ruled out, thermochemical reduction of contemporaneous Ordovician seawater sulfate was the dominant mechanism for sulfide production in the Snowdon system, resulting in a mean value of about 12‰ in both the host volcanic strata and the mineralized veins. Despite the tectonic setting being prospective for VMS deposits, strata-bound sulfide accumulations are absent in the caldera. This is attributed to the shallow water depths, which promoted boiling and the formation of sub-seafloor vein-type mineralization. Furthermore, the tectonic instability of the caldera and the high energy, shallow marine environment would have limited preservation of any seafloor deposits. The new U-Pb dates for the base (454.26 ± 0.35 Ma) and top (454.42 ± 0.45 Ma) of the host volcanic rocks, indicate that the Snowdon magmatic activity was short lived, which is likely to have limited the duration and areal extent of the ore-forming system. The absence of massive sulfide mineralization is consistent with the general paucity of economic VMS deposits in the Avalon Zone. Despite the highly prospective geological setting this study further illustrates the importance of volcanic facies mapping and associated paleo-environmental interpretations in VMS exploration

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks

    Get PDF
    We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (>140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge
    corecore