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*Corresponding author (ThomasSheldrick@gmail.com) 

A combination of new 40Ar/39Ar dating results, major- and trace-element data, plus Sr-Nd-Pb-
Hf isotope data, are used to investigate the petrogenesis of Triassic high-Si adakite (HSA), 
Cretaceous low-Si adakite-like (LSA) lavas, and Cretaceous high-K and shoshonitic 
trachyandesite lavas, from eastern and south-central Mongolia. All samples are light rare-
earth element and large-ion lithophile element enriched but depleted in some high-field 
strength elements (notably Nb, Ta and Ti). Two alternative models are proposed to explain 
the petrogenesis of the HSA samples. (1) A southward-subducting Mongol-Okhotsk slab 
underwent partial melting in the Triassic during the closure of the Mongol-Okhotsk Ocean, 
with the resultant melts assimilating mantle and crustal material. Alternatively (2), a basaltic 
underplate of thickened (>50 km; >1.5 GPa), eclogitic lower crust foundered into the 
underlying mantle, and underwent partial melting with minor contamination from mantle 
material and some shallow-level crustal contamination. The LSA samples are interpreted as 
melts derived from a lithospheric mantle wedge that was previously metasomatised by slab 
melts. Similarly, the trachyandesite lavas are interpreted as melts deriving from a 
subduction-enriched subcontinental lithospheric mantle. The spatial distribution of these 
samples implies that metasomatism likely occurred due to a southward-subducting Mongol-
Okhotsk slab associated with the closure of the Mongol-Okhotsk Ocean. When this 
interpretation is combined with previous evidence for a northward-subducting Mongol-
Okhotsk slab it advocates that the Mongol-Okhotsk Ocean closed with double-sided 
subduction.  
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1. Introduction 

Far East Russia, central Mongolia and NE China form part of the Central Asian Orogenic 

Belt (CAOB), located between the Siberian Craton to the north, and the Tarim and North 

China Craton to the south, and extends for >4000 km from the Tian Shan of Central Asia in 

the west, to the Sea of Okhotsk in the east (e.g., Windley et al., 2007; Rippington et al., 

2008, 2013; Zhou et al., 2010; Zhou and Wilde, 2013; Safonova and Santosh., 2014; Xiao et 

al., 2015; Safonova, 2017). Although the Paleozoic tectonic evolution of NE China was 

dominated by the amalgamation of microcontinental massifs and the closure of the Paleo-

Asian Ocean (e.g., Sengör et al., 1993; Sengör and Natal’in, 1996), the Mesozoic tectonic 

evolution of East Russia, central Mongolia and NE China was largely influenced by Paleo-

Pacific and Mongol-Okhotsk tectonic systems (e.g., Tang et al., 2014; Dash et al., 2015). 

Thus, the CAOB is a large and complex accretionary orogenic belt, influenced by the closure 

of multiple oceans.   

The Mongol-Okhotsk suture (Fig.1) comprises of ophiolites (Zonenshain et al., 1990; 

Tomurtogoo et al., 2005) and sediments containing marine fossils (Halim et al., 1998), 

attesting to the existence of the Mongol-Okhotsk Ocean (e.g., Seton et al., 2012). However, 

how and when the Mongol-Okhotsk Ocean closed is still a matter of debate despite being 

integral to unravelling the geological complexities of the CAOB (e.g., Bussin et al., 2011; 

Ruppen et al., 2013; Fritzell et al., 2016; Liang et al., 2019). This ocean formed in the 

Carboniferous between the continental blocks of Siberia to the north and Amuria (Mongolia)–

North China blocks to the south (e.g., Tomurtogoo et al., 2005; Cocks and Torsvik, 2007; 

van der Voo et al., 2015). The final closure time of the Mongol-Okhotsk Ocean is estimated 

to have occurred sometime between the Late Jurassic (~155 Ma) and the beginning of the 

Early Cretaceous (~120 Ma) and intrusions and marine fossils found in the Mongol-Okhotsk 

suture young from west to east, suggesting that the ocean closure started in the west and 

ended in the east (e.g., Zonenshain et al., 1990; Halim et al., 1998; Kravchinsky et al., 2002; 

Tomurtogoo et al., 2005; van der Voo et al., 2015). However, there is uncertainty whether 

this ocean closed with double-sided subduction, or whether there was subduction along the 

northern, or southern margin only (e.g., Windley et al., 2010; Bussien et al., 2011; Wang et 

al., 2015; van der Voo et al., 2015; Fritzell et al., 2016). Evidence for northwards subduction 

of the Mongol-Okhotsk oceanic plate includes arc-related calc-alkaline granodiorites, 

granites and quartz diorites (Zorin, 1999) in the Khentey and Dauria zones (Fig. 1), seismic 

tomographic images of slabs (van der Voo et al., 1999); detrital zircon analysis studies from 

the Hangai – Hentei basin (Badarch et al., 2002; Kelty et al., 2008; Bussin et al., 2011) and 

numerical modelling results (Fritzell et al., 2016). However, zircon analysis studies, on 

samples from the Ereendavaa terrane and Middle Gobi volcanic belt, south of the Mongol-



Okhotsk suture, suggest that there was also subduction on the southern margin and indicate 

that the final suturing of the Mongol-Okhotsk Ocean occurred after the Triassic (Bussien et 

al., 2011). Nevertheless, some models have advocated for northward or southward 

subduction only (e.g., Meng, 2003; Seton et al., 2012; Bars et al., 2018). This lack in 

understanding leads to difficulties in reconstructing the history and geometry of this 

penultimate ocean closure event which united the Asian continent. 

The North China Craton and southern Mongolia underwent widespread removal of 

lithospheric mantle in the Mesozoic (e.g., Gao et al., 2002; Zhang et al., 2002; Menzies et 

al., 2007; Sheldrick et al., 2018). Yet little is understood as to whether the closure of the 

Mongol-Okhotsk Ocean influenced Mesozoic magmatic and/or lithospheric removal 

processes; for example, Bars et al. (2018) concluded that Mesozoic magmatism across 

southern Mongolia and the North China Craton was due to Paleo-Pacific slab roll-back rather 

than from any involvement of a southward-subducting Mongol-Okhotsk ocean plate. Other 

researchers have attributed double-sided subduction to facilitating Mesozoic magmatic 

processes in southern Mongolia (e.g., Windley et al., 2010; Sheldrick et al., 2018; Tang et 

al., 2018). In the North China Craton, voluminous granitoid magmatism has been attributed 

to southward subduction of the Mongol-Okhotsk Plate (Liu et al., 2018; Dai et a., 2019; Zhao 

et al., 2019), while a slab window model, for the genesis of volcanism in the Great Xing’an 

Range, was suggested by Zhang (2014). Recent research from Deng et al. (2019) also 

proposes that flat-slab subduction of the Mongol-Okhotsk oceanic plate might explain 

magmatism in the Great Xing’an Range and contemporaneous foreland folding and 

thrusting. Furthermore, such large-scale models invoking southward subduction of the 

Mongol-Okhotsk oceanic plate could have had implications for asthenospheric flow (e.g., 

Barry et al., 2017) and may have facilitated convective erosion of the lithosphere (e.g., He, 

2014; 2015).  

To investigate whether an oceanic slab was subducted southwards beneath southern 

Mongolia and potentially northern China, we examine two occurrences of adakitic lavas from 

south of the Mongol-Okhotsk suture and compare them to nearby Mesozoic lavas (Fig. 1). 

The term “adakite” has caused unnecessary confusion in the literature, because adakites are 

often interpreted to be partial melts of subducted basalt which has been metamorphosed to 

eclogite or amphibolite only (Castillo, 2006). However, adakite geochemical signatures can 

be generated from a variety of processes, such as melting of underplated lower crust 

(Atherton et al., 1993), delamination of lower crust (Xu et al., 2002) and fractional 

crystallisation of late stage accessory minerals such as apatite (Moyen, 2009). Traditionally 

rock classifications are based on mineralogy/geochemistry rather than melting process or 

source (e.g., Winchester and Floyd, 1977), and we suggest that this is the best approach.  



Herein, we classify our samples as adakite/adakitic based on major- and trace-element 

geochemistry alone (Defant and Drummond, 1990; Castillo, 2006): low MgO (<3 wt. %), high 

Al2O3 (>15 wt. %), high SiO2 (>56 wt. %), high Sr (>300 ppm), low Yb (<1.9 ppm) and high 

La/Yb (>20).      

2. Geological setting   

Low-silica adakite (LSA) samples (TCS 7.1 to TCS 7.7) were collected from a large outcrop 

on the border of the Adaatsag and Ereendavaa terrane (Fig. 1). The Adaatsag terrane, 

which extends into northeast Russia, is described as an accretionary wedge (Badarch et al., 

2002) and represents part of the Mongol-Okhotsk Belt; a part of the Mongol-Okhotsk suture. 

As described by Badarch (2005), the Adaatsag terrane contains serpentized dunites and 

harzburgites associated with Carboniferous layered gabbro, sheeted mafic dykes, basalts 

overlain by red cherts and clastic sediments, suggesting an evolved ocean crust existed 

within the Carboniferous. The adjacent Ereendavaa terrane extends into Russia and NE 

China and is a cratonic terrane that includes plutonic granite intrusions as young as Lower 

Jurassic (Badarch et al., 2002). Samples TCS 7.1 to 7.7 represent different units through a 

sequence of lavas; where TCS 7.1 was at the top and TCS 7.7 at the base, of the sequence. 

Trachyandesite and trachyte lavas (TCS 2.1 to 13.1; Group 1) were also collected from the 

area around the LSA outcrop (~15-160 km from the LSA outcrop) and are included in this 

study for comparison.  

High-silica adakite (HSA) samples were collected from a large outcrop ~45 km west 

of Choir, close to the Tsagandelger area (Fig. 1). These lavas are located on the Middle 

Gobi volcanic belt (Badarch et al., 2002). In the Tsagandelger area, numerous other 

Mesozoic volcanic rocks occur within graben structures. As described by Dash et al. (2015), 

these rocks, here termed Group 2, are shoshonite and absarokite in composition, and in the 

Tsagandelger area have been dated at 114 ±0.7 Ma (40Ar/39Ar method). 

3. Petrography   

The LSA lavas are hypocrystalline with a glomeroporphyritic texture (Fig. 2A). The main 

glomerocrysts are formed of plagioclase feldspar and augite. There are occasional sanidine 

phenocrysts as well as rare sericitisation of plagioclase. The groundmass makes up ~80% of 

the rock volume and is dominated by plagioclase feldspar (some containing apatite 

inclusions) and minor opaque minerals. 

The HSA samples are fresh, glomeroporphyritic, hypocrystalline and contain more 

glass than the LSA lavas (Fig. 2B). The glomerocrysts are composed of clinopyroxene 

(augite and minor pigeonite) and there are separate phenocrysts of enstatite (Fig. 2C) and 

plagioclase feldspar. Some of the enstatite crystals show evidence of resorption and there 



are also clusters of quartz crystals with melted/resorbed edges (Fig. 2D). The groundmass 

makes up ~90% of the rock volume and consists primarily of plagioclase feldspar.   

Group 1 trachyandesite outcrops have undergone weathering, are vesicular 

(commonly infilled with siliceous material) and have oxidised and weathered tops. Samples 

(TCS 2.1, 3.1 & 4.1) contain carbonate amygdales. The trachyandesite lavas are 

hypocrystalline and the groundmass contains abundant plagioclase, altered clinopyroxene 

and rare iddingsitised olivine (Fig. 2E-F). Plagioclase crystals have undergone partial (<5%) 

sericite alteration. Plagioclase phenocrysts sometimes have sieve textures and oscillatory 

zoning, whereas some of the feldspar crystals, in the groundmass, contain apatite 

inclusions. Sample TCS 13.1 contains rosetta plagioclase phenocrysts and nepheline 

phenocrysts. A single trachyte sample, TCS 5.1, is hypocrystalline, contains crustal 

xenoliths, megacrysts of alkali feldspar and abundant antecrysts of plagioclase, which exhibit 

sieve textures and resorption features. This trachyte also contains altered clinopyroxene, 

alkali feldspar phenocrysts and aegirine phenocrysts which have oxidised and magnetite-rich 

reaction coronas (Fig. 2G-H).  

The Group 2 trachyandesite lavas, near the HSA outcrop (~6-155 km), are described 

as having porphyritic textures with phenocrysts of hypersthene, augite, amphibole, mica and 

feldspar (Dash et al., 2015). The groundmass is dominantly glass and plagioclase.          

4. Argon dating results 

 Age spectra and inverse isochron ages (36Ar/40Ar versus 39Ar/40Ar) were calculated 

for incremental heating experiments (Table 1). The 40Ar/39Ar plateau diagrams are presented 

in Figure 3. The analytical methods are found in the online supplementary material.   

Despite sample TCS 4.1 having a short plateau (38.6% 39Ar), it consists of many 

steps (n=15) which suggests the preservation of an age component representative of the 

crystallisation  age. The large staircase of ages in the early steps (Fig. 3A) likely reflects 

sample alteration (clay formation in plagioclase). Each step heating experiment was run at 

high-resolution, meaning that many steps was utilised, in this case, n>30. A high-resolution 

approach was used to attempt to ‘see through’ or unmix alteration and trapped components 

from radiogenic argon containing emplacement age information. 

The two LSA samples (TCS 7.1 and 7.7) have plateau ages of 138.4 ±2.8 and 138.8 

±0.4 Ma respectively, which is in good agreement with calculated isochron ages of 139.2 

±6.1 and 138.8 ±0.4 Ma. The HSA sample (TCS 59.2) has a plateau age of 229.8 ±0.6 Ma 

and is in good agreement with the isochron age of 230.3 ±1.1 Ma. Finally, the Group 1 



sample (TCS 4.1) has a plateau age of 120.7 ±0.4 Ma and an isochron age of 119.0 ±2.3 

Ma.  

Herein, we take the plateau age to represent the crystallisation age of our dated 

samples (Fig. 3). 

5. Geochemical results 

5.1 Rock classification and major-element variations  

The analytical methods and data are found in the online supplementary material. The LSA, 

HSA and Group 1 samples have loss-on-ignition (LOI) values < 2 wt. %, other than sample 

TCS 7.5, which has a LOI value of 4.75 wt. %. Only one sample (4/2) from Group 2 has a 

LOI value >3. wt. %.  Due to the higher LOI value for sample TCS 7.5 this sample is omitted 

from further study.  

 Rock classifications are presented in Figure 4 using a SiO2 wt. % vs. Nb/Y immobile 

element plot from Winchester and Floyd (1977). The LSA samples plot in the trachyandesite 

field, while the HSA samples plot in the dacite field. Group 1 and 2 samples plot 

predominantly in the basaltic-trachyandesite/trachybasalt to trachyandesite field. Sample 

TCS 5.1, from Group 1, classifies as a trachyte. The SiO2 versus Na2O + K2O classification 

system (after Irvine and Baragar, 1971) discriminated the LSA samples as belonging to the 

alkaline series and the HSA samples in the sub-alkaline series (Fig. 5A). Other than three 

samples (TCS 5.1, TCS 13.1 and 4/626), the Group 1 and 2 samples plot in the alkaline 

series. The LSA and Group 1 samples have K-contents consistent with shoshonitic rocks or 

high-K rocks (Fig. 5A). The discriminant scheme from Hastie et al. (2007) uses elements Th 

and Co to further classify sub-alkaline volcanic rocks.  On this Th-Co classification diagram, 

the HSA samples plot in the high-K/shoshonite field (Fig. 5B).  

On a Y vs. Sr/Y plot (Fig. 6A), the LSA samples form a trend between end-member 

compositions for typical trachyandesite/trachyte and an adakite array. The HSA samples plot 

fully within the adakite array. Other than two samples (3/11 & 3/12) from Group 2, the Group 

1 and 2 samples plot within the typical trachyandesite/trachyte array.  

5.2 Trace-element and REE variations 

The LSA and HSA samples have increasing La/Yb ratios with decreasing Yb (Fig. 6B) and 

the Group 2 samples have decreasing Zr concentrations with increasing SiO2 (Fig. 7A). The 

LSA, Group 1 and 2 samples have clear correlations between SiO2 and P, Sm and Yb (Fig. 

7 B-G).  



On the primitive mantle-normalised and chondrite normalisation diagrams (Fig. 8) the 

LSA, HSA, Group 1 and 2 samples are all enriched in the light rare-earth elements (LREE), 

high-field strength elements (HFSE) and large-ion lithophile elements (LILE) compared to N-

MORB (normal mid-ocean ridge basalt; Gale et al., 2013). Furthermore, the study samples 

are much more depleted in the heavy rare-earth elements (HREE) compared to N-MORB, 

and have negative Nb and Ta anomalies. All the LSA samples have negative Y anomalies 

(Fig. 8A). In addition to all the samples having positive Pb anomalies they also have 

negative Sm and Ti anomalies. The LSA samples have positive Ba anomalies and are more 

enriched in the LREE and MREE compared to the HSA samples (Fig. 8A). The HSA 

samples are more enriched in Rb, Th and U but have much lower concentrations of Nb and 

Ta compared to the LSA samples. Group 1 and 2 samples commonly have positive Ba 

anomalies (Fig. 8B). All the samples are enriched in the fluid-mobile incompatible elements 

(e.g., Rb, Ba, K) compared to ocean island basalt (OIB; Sun and McDonough, 1989) and 

average continental arc basalt (CAB; Kelemen et al. 2003). Similarities between CAB and 

the Mongolian samples are evident from the mirroring of many element anomalies. However, 

all the Mongolian samples are more enriched in LILE, HFSE and LREE than CAB. The LSA 

and HSA samples, plus some of the Group 2 samples, are more depleted in HREE than 

typical CAB.  

6. Fractional crystallisation  

No olivine phenocrysts were identified in the LSA and HSA samples; this suggests that if 

there was any olivine fractionation, then it must have occurred in the parental magma. 

However, olivine fractionation is evident in Group 1 samples because iddingsitised olivine 

phenocrysts were identified in thin section studies (Fig. 2). 

Petrological studies identified augite in the LSA, HSA and Group 1 samples, as well 

as in Group 2 lavas by Dash et al. (2015), suggesting it was a fractionating phase. 

Decreasing Dy/Dy* vs. Dy/Yb (Fig. 7H) trends in all sample suites further indicate 

clinopyroxene fractionation.  

Chondrite-normalised Eu/Eu* numbers [
��

��∗
	= (

��	

((
�	�
�	)�.�)
)] range from 0.87 to 

0.95 for the LSA samples and 0.83 to 0.95 for the HSA samples; this does not indicate 

significant plagioclase fractionation (or accumulation). Group 1 and 2 samples have Eu/Eu* 

numbers ranging from 0.74 to 0.84 and 0.66 to 0.86 respectively, and correlates positively 

with Sr, suggesting plagioclase fractionation was more significant than in the LSA and HSA 

(Fig. 7I). 



Zircon and apatite fractionation can deplete melts of HREEs. The Group 2 samples 

and possibly the LSA samples have negative correlations between Zr and SiO2 likely 

reflecting zircon fractionation (Fig. 7A). The primitive mantle-normalisation diagrams show 

samples from all suites have negative Sm anomalies, possibly because of apatite 

fractionation (Fig. 8A-B). Furthermore, other than the HSA samples, clear trends are seen 

between P and SiO2, and Yb and Sm supporting apatite fractionation (Fig. 7B-G). The 

negative Y anomalies, along with low abundances of the HREEs (e.g., Yb, Lu) on the 

primitive mantle plots (Fig. 8A-B), for the LSA and HSA samples likely reflect residual 

garnet.  

7. Source characterisation  

On a plot of SiO2 versus Mg-number (Fig. 9) the LSA samples plot within the “slab melts” 

field (Sen and Dunn, 1994; Rapp et al. 1999, and references therein) and typically have 

lower Mg-numbers (from 0.33-0.39, where Mg-number= {molar Mg/(Mg+Fet)}) than the HSA 

samples (0.31 to 0.49) which are more enriched in Fe2O3(T). If the LSA and HSA were 

derived from the same source, then this lower Mg-number for the LSA would not be 

consistent with a simple model that invoked assimilation of more mantle peridotite, as we 

would expect the LSA to have higher Mg-numbers. However, the LSA samples have Mg-

numbers comparable to Group 1 lavas, between 0.21 and 0.39.  

The HSA samples also lie in, or close, to the “slab melting” field for SiO2 versus Mg-

number, next to results for “slab” + peridotite melting experiments (Rapp et al., 1999), 

suggesting only minor mantle assimilation, or extensive fractional crystallisation processes. 

Most of the HSA samples are comparable to global examples of Cenozoic adakites (Fig. 9) 

and have similar Mg-numbers to Carboniferous Mongolian adakites from the Shuteen 

Complex (Batkhishig et al., 2010). Three of the HSA samples have Mg-numbers ranging 

from 0.47 to 0.49 at >63 wt. % SiO2. However, although the HSA samples have higher Mg-

numbers than some adakitic crustal melts (Fig. 9; Lingqiu Basin and Huichang Basin), they 

are comparable to others (Fig. 9; Ningzhen area, east China; and Awulale-Sanchakou 

(A&S), of the Xinjiang Tianshan region, China) which have been hypothesised to have 

interacted with mantle material (Xu et al., 2002; Zhao et al., 2008).  

To further consider source characteristics, we can compare our data to melting 

experiments that produced adakitic melts (e.g., Rapp et al., 1991, 1999; Sen and Dunn, 

1994; Wolf and Wyllie, 1994; Rapp and Watson, 1995). Using these studies, geochemical 

fields were generated for adakitic liquids produced from partial melts of basaltic 

compositions (Fig. 10). Geochemical fields were classified in the work by Xiong et al. (2003) 

and are summarised in Table 2.    



Also included on these plots (Fig. 10 A-F) is the adakite field from Xiong et al. (2003, 

and references therein). This adakite field was generated from 11 Cenozoic global adakite 

localities: Aleutian Arc, Alaska; Cook Island, Chile; Baja of California, Mexico; Sierra Madre, 

Mexico; Skagway, Alaska; Mindanao, Philippines; Southwest Japan; Austral Andes and 

Quimsacocha, Ecuador.    

The LSA samples have major-element characteristics where some (or all) of the 

samples plot outside the adakite field (Fig. 10) or any of the melt experiment fields (Fig. 10 

A, B, C, E & F). They have less Al2O3, less CaO and more K2O than the melts produced 

from the low-K, -Na and high-Na, -Mg amphibolite (WW) and thus it seems unlikely that this 

would be an appropriate protolith. Furthermore, the LSA samples have less Al2O3, Na2O and 

more CaO than the experimental partial melts of alkali-rich basalt (R1). Other than for Na2O, 

the LSA samples also plot outside the R2-4SW field (e.g., for Al2O3, FeO and K2O; Fig. 10 A, 

C & F). On the plots where the LSA samples plot within the R2-4SW field (Fig. 10 B & E) it 

appears to be a trend into this field; such a trend could reflect late-stage fractionation 

processes.   

The HSA samples have significantly less Al2O3 (Fig. 10A) and CaO (Fig. 10E), and 

are more enriched in Na2O and K2O (Fig. 10 D & F), than the 10 kbar amphibolite partial 

melts (WW) and thus arguably preclude a similar protolith composition. Furthermore, the 

HSA samples have less Al2O3 (Fig. 10A), Na2O (Fig. 10D) and more CaO (Fig. 10E) than 

the alkali-rich basalt partial melts (R1; these experiments were also done at a range of 

pressures between 12-38 kbar) suggesting this also may be an unsuitable protolith. Most 

HSA samples plot in the R2-4SW field. However, some HSA samples don’t plot in the R2-4SW 

field for Al2O3 (Fig. 10A) and only one of the samples plots in this field for MgO (Fig. 10B). 

Other than for Al2O3 and K2O (Fig. 10 A & F), the HSA samples commonly plot in the 

adakite field. Although enrichment in K2O has been used to suggest that Mesozoic adakites 

from China are crustal melts (e.g., Wang et al. 2006), this criterion alone is insufficient. For 

example, most of the Carboniferous Shuteen Complex adakites are more enriched in K2O 

than other global adakite examples, and depleted in Al2O3 (Fig. 10 A & F), yet have 87Sr/86Sri 

<0.704 which argues against a crustal melt origin. However, the HSA samples are most 

similar in affinities to high-pressure melting experiments that suggest a N-MORB-source.  

If we consider trace-element abundances, melting of eclogite should produce melts 

with lower Cr and Ni concentrations than melts from mantle peridotite (e.g., Castillo, 2006). 

Therefore, melts of an eclogite lower crust, which has undergone minor, or no mantle 

interaction, will also have lower Cr and Ni concentrations than mantle peridotite melts. 



However, because any slab melt must pass through any overlying mantle, these melts 

should become enriched in Cr and Ni during mantle assimilation processes.   

The LSA samples have Cr and Ni concentrations higher than the crustal melts which 

have undergone minor or no mantle assimilation (Fig. 11; Lingqiu Basin, North China 

Craton; Ningzhen area, east China; Huichang Basin, China). The Cr and Ni concentrations 

are also higher than in the Group 1 lavas, and a negative correlation with SiO2 suggests a 

fractionation control.  

The HSA samples also have Cr and Ni concentrations higher than many crustal 

melts which have undergone minor or no mantle assimilation (Fig. 11) but plot along with 

Cenozoic adakites or with hypothesised crust + mantle melts (e.g., Ningzhen area). Lower 

crustal foundering has been hypothesised as one method to explain how a mafic lower crust 

could interact with mantle material (e.g., Gao et al., 2004). Thus, the HSA samples have Ni 

and Cr concentrations most likely reflecting slab + mantle melts, or crust + mantle melts.     

In global studies, adakitic melts have also been identified by considering Nb/Ta ratios 

(e.g., Condie, 2005). This is because continental crust has low average Nb/Ta ratios (10.9-

13; Rudnick and Fountain, 1995; Rudnick and Gao, 2003), compared to MORB (16.7 ±1.8; 

Kamber and Collerson, 2000) or primitive mantle (17.5 ±2; McDonough and Sun, 1995). 

However, rutile partitions Nb and Ta, but fractionates them from one another (Foley et al., 

2000; Liang et al., 2009; Xiong et al., 2011; Gan et al., 2019). Therefore, melts in equilibrium 

with residual rutile should be characterised by high Nb/Ta ratios (e.g., Gao et al., 2004; 

Xiong et al., 2005). A mantle that has been metasomatised by small degree partial melts of 

an eclogite may also have high Nb/Ta ratios (e.g., Foley et al., 2002). In summary, initial 

melts of rutile-bearing eclogite should have relatively high Nb/Ta ratios. However, 

progressive melting of this eclogite would exhaust rutile, therefore resulting in melts with low 

Nb/Ta ratios inherited from earlier melt depletion (e.g., Liu et al., 2008). Based partly on low 

Nb/Ta ratios, Condie (2005) determined that adakitic tonalite-trondhjemite-granodiorites may 

be produced from partial melting of hydrous mafic rocks in the lower crust (with Nb/Ta ratios 

averaging ~5) and are thus unlike slab melts. As discussed by Condie (2005), most Nb data 

from XRF must be rejected and only high precision ICP-MS Nb and Ta should be used; 

hence the data is plotted on the same diagram as Condie (2005) using ICP-MS data for 

these elements (Fig. 12). 

The LSA and HSA samples have an average Nb/Ta ratio of 24.6 (±0.77) and 18.38 

(±0.85) respectively. Therefore, the LSA samples have high Nb/Ta ratios consistent with a 

source that contained residual rutile or underwent metasomatic processes (e.g., by melts 

from a rutile-bearing protolith). The HSA samples have lower Nb/Ta ratios which are close to 



average MORB and primitive mantle, consistent with the experimental melt comparisons 

(Fig. 10). Thus, the HSA samples have Nb/Ta ratios consistent with rutile-eclogite melting, 

albeit, they plot out of the adakite field defined in Condie (2005). The Group 1 samples 

(excluding the single trachyte sample – TCS 5.1) have an average Nb/Ta ratio of 22.78 

(±0.79), whereas the Group 2 samples have an average Nb/Ta ratio of 18.4 (±0.84). 

Therefore, the Group 1 and 2 samples have Nb/Ta ratios higher than average continental 

crust and likely reflect melting from a source which underwent metasomatism possesses. 

The lower Nb/Ta ratios in the Group 2 samples might reflect melting from a less 

metasomatized source, and/or increased crustal involvement. 

8. Isotope variations and crustal input 

Initial 87Sr/86Sr(i)-εNd(t)-Pb(i)-εHf(t) values are calculated for the HSA (230 Ma), LSA (138 Ma) 

and Group 1 (121 Ma) samples (Fig. 13, 14). The low MgO and fractionation of late-stage 

minerals indicates that none of these melts are primary and thus likely had opportunity for 

crustal contamination. The crustal cumulates in the HSA samples also indicate crustal 

assimilation processes.  

All the LSA, HSA and Group 1 samples have 87Sr/86Sr(i) vs. εNd(t) values that plot in 

the mantle array (Fig. 13A). The similar 87Sr/86Sr(i) and εNd(t) values for the LSA and Group 1 

samples might reflect comparable source compositions. The HSA have positive εNd(t) values 

(0.48 – 1.17) unlike most of the crustal adakitic rocks from China. Furthermore, the HSA 

have 87Sr/86Sr(i) values (0.7051– 0.7053) close to some Cenozoic adakites, with values lower 

than most crustal derived adakitic rocks from China (Fig. 13A); however, the HSA also have 
87Sr/86Sr(i) vs. εNd(t) values like the Awulale adakitic rocks which are interpreted as a product 

of basaltic underplating of amphibole-eclogite facies (Zhao et al., 2008). To test whether 

assimilation-fractional crystallisation (AFC) could change a typical adakite signature 

(87Sr/86Sr = ~0.704 and high εNd values) to values close to the HSA, AFC (DePaolo, 1981) 

modelling was done. Because Carboniferous adakites from the Shuteen Complex (South 

Mongolia) are interpreted as slab melts (Batkhishig et al., 2010) a sample (SH-18) from this 

group is used as a starting composition. The crustal contaminant was a granulite crustal 

xenolith from southern Mongolia (Barry et al., 2003) and a value (assimilation/crystallisation 

rate) of r = 0.5 is used. The AFC modelling indicates that the HSA could be from a parental 

magma with similar 87Sr/86Sr(i) and εNd(t) compositions to the Shuteen Complex adakites but 

with additional crustal input (Fig. 13A).  

The εHf(t) values for the LSA, HSA and Group 1 samples are similar (2.94-5.59). 

Despite these values being lower than P-MORB (Fig. 13B) they are like values obtained 

from zircons in the Mengyin adakites (Wang et al., 2016).   



The Pb isotopes (Fig. 14) for the LSA, HSA and Group 1 samples have similarly high 

values. These samples plot above the NHRL, P-MORB field and the Awulale adakitic 

samples but are more comparable to the global Cenozoic and Chinese Mengyin adakites. 

Group 1 samples have similar Pb isotopic abundances to the LSA and HSA despite not 

having adakite-like major- and trace-element abundances.  

9. Discussion  

During the Mesozoic, eastern Asia was affected by  Paleo-Pacific plate subduction, the 

closure of the Paleo-Asian Ocean (evident today from the Solonker suture) and the closure 

of the Mongol-Okhotsk Ocean (e.g., Chen et al., 2009; Windley et al., 2010; Xiao et al., 

2015; Torsvik and Cocks, 2017). However, subduction of the Paleo-Pacific plate occurred 

>2000 km away from Mongolian Mesozoic lava fields (e.g., Van Hinsbergen et al., 2015; 

Torsvik and Cocks, 2017, Sheldrick et al., 2018) while the closure of the Paleo-Asian Ocean 

(e.g., Sengör and Natal’in, 1996; Windley et al., 2010) is estimated to be around 296-234 ±6 

Ma (Chen et al., 2009) and therefore may predate all of our samples.  

Although the HSA magmatism (230 Ma) possibly coincided with the final closure of 

the Paleo-Asian Ocean (Chen et al., 2009) the samples are presently ~500 km away from 

the Solonker suture. However, the HSA magmatism corresponds with the fastest (250-200 

Ma) stage of closure of the Mongol-Okhotsk Ocean (Wu et al., 2017) and is presently ~100 

km south of the Mongol-Okhotsk suture (Fig. 1). These samples typically have higher 
87Sr/86Sr(i) and lower εNd(t) values than adakites (Fig. 13A) but the adakitic rocks from China 

have similarly much higher 87Sr/86Sr(i) and lower εNd(t) values. AFC modelling indicates that 

crustal contamination could modify a typical adakite isotopic signature (i.e. values akin to N-

MORB) to values close to the HSA samples (Fig. 13A) and the presence of melted quartz 

cumulates is consistent with assimilation processes. However, the HSA samples also have 

isotopic values like adakitic rocks which were derived from basaltic underplating (e.g., Zhao 

et al., 2008). Therefore, it is difficult to favour a model of slab melting or basaltic 

underplating, for the HSA genesis, from isotope data alone.    

The HSA samples have Mg-numbers and MgO wt. % concentrations consistent with 

mantle assimilation (Fig. 9 & 10B). Furthermore, the relatively low Na2O and relatively high 

Ni + Cr concentrations compared to crustal melts also supports mantle assimilation (Fig. 

10D & 11). Two models are proposed to explain the petrogenesis of these samples: 

(1)  A southward-subducting Mongol-Okhotsk slab underwent partial melting during 

the closure of the Mongol-Okhotsk Ocean. These slab melts then assimilated mantle and 

finally crustal rocks. 



(2) The closure of the Mongol-Okhotsk Ocean thickened the crust. Basaltic 

underplating of a thickened (>50 km; >1.5 GPa), eclogite lower crust then foundered into the 

underlying mantle, assimilated minor mantle material and finally underwent crustal 

contamination.    

The LSA magmatism coincided with, or occurred sometime after, the final suturing of 

the Mongol-Okhotsk Ocean (e.g., van der Voo et al., 2015; Wu et al., 2017). These samples 

have Y vs. Sr/Y values that trend into the adakite field (Fig. 6A) but plot with major- and 

trace-element concentrations unlike adakites (Fig.10) and have geochemical resemblances 

to the Group 1 samples (e.g., Fig. 10, 12, 13, 14). We therefore interpret the LSA to have a 

source akin to the Group 1 lavas but have an adakite-like HREE depletion from late-stage 

fractionation of accessory minerals such as zircon and apatite (Fig. 7).   

Despite the LSA attaining adakite-like HREE depletion via fractionation processes, 

the samples are more depleted in the HREEs at a given MgO or SiO2 wt. % than the Group 

1 lavas (e.g., Fig. 7, 10). Furthermore, the LSA samples are more enriched in Na2O than the 

Group 1 and 2 lavas (Fig. 10D) and have high Nb/Ta ratios (Fig. 12). We interpret these 

geochemical attributes to reflect a source modified by small-degree partial melts from a 

Mongol-Okhotsk slab.   

The Group 2 lavas were compared to Mesozoic lavas from the Gobi Altai by 

Sheldrick et al. (2018) and interpreted as melts from a subduction-enriched preconditioned 

subcontinental lithospheric mantle (SCLM). The Group 1 lavas have similar geochemical 

characteristics, with a depletion in some HFSE (Nb, Ta and Ti) and have comparable Sr and 

Nd isotope signatures (Fig. 13). We therefore interpret the Group 1 basaltic-trachyandesite 

and trachyandesite lavas to be derived from the SCLM and suggest that this mantle 

underwent metasomatism from processes associated with the closure of the Mongol-

Okhotsk Ocean. The single trachyte sample plots separately from Group 1 samples (Fig. 7) 

and it’s unclear whether this sample reflects extensive magmatic differentiation (with later 

stage crustal contamination), from a source like the Group 1 samples – or whether this 

trachyte reflects a different melting/petrogenesis process.  

Overall, the proximity of the adakites to the Mongol-Okhotsk suture is best explained 

by the involvement of a southward-subducting Mongol-Okhotsk slab. When this 

interpretation is combined with previous evidence for northwards-subduction of a Mongol-

Okhotsk slab (Zorin, 1999; van der Voo et al., 1999; Fritzell et al., 2016) it indicates the 

Mongol-Okhotsk Ocean closed in a bimodal fashion. 



10. Conclusions 

(1) Two alternative hypotheses are proposed to explain the HSA magmatism: (i) a 

southward-subducting Mongol-Okhotsk slab underwent partial melting in the Triassic during 

the closure of the Mongol-Okhotsk Ocean, with the resultant melts assimilating mantle and 

crustal material. Alternatively, (ii) basaltic underplating of a thickened (>50 km; >1.5 GPa), 

eclogite lower crust, foundered into the underlying mantle, and these crustal melts were then 

assimilated with minor mantle material, and eventually underwent crustal contamination.  

(2) The LSA magmatism coincided with, or occurred shortly after, the final suturing of the 

Mongol-Okhotsk Ocean, and is proximal to the Mongol-Okhotsk suture. These melts are 

likely derived from a source modified by melts from a southward-subducted Mongol-Okhotsk 

slab. However, the LSA developed adakite-like HREE depletion from fractionation of late-

stage accessory minerals. 

(3) The Group 1 and 2 samples are derived from the SCLM; this mantle likely underwent 

metasomatism from processes associated with the closure of the Mongol-Okhotsk Ocean.  
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Figure captions 

Figure 1 – A sketch map of Mongolia showing the sample areas and the distribution of 

Mesozoic mafic to intermediate volcanism south of the Mongol-Okhotsk suture (MOS). 

Sample areas: (B) low-Si adakite and Group 1 samples and (C), high-Si adakite and Group 2 

samples. The distribution of volcanism is based on Mongolian government geological maps 

and field observations. The distribution of Mesozoic sedimentary basins is from Johnson et 

al. (2003). Two small insert geological maps from Tomurtogoo et al. (1999) show the 

surrounding geology next to the low-Si adakite (Map B) and high-Si adakite (Map C) 

localities (black stars). Insert maps key: 1, basalt and basalt-andesite formations; 2, 

tufogenic-terrigenous formations; 3-6, granite-granodiorite formations; 7-8, terrigenous 

sediment; 9, carbonate-terrigenous formation; 10-11, rhyolite; 12, coal-bearing molasse; and 

13, polymetamorphic complex.   

Figure 2 – Photomicrographs of low-Si adakite (A), high-Si adakite (B-D), trachyandesite (E 

& F) and trachyte (G & H) samples. Photomicrographs A-F in XPL and G-H in PPL: (A) 

sanidine, plagioclase and augite phenocrysts; (B) glomerophyritic texture; (C) an enstatite 

and augite phenocryst showing resorption features; (D) melted quartz crystals; (E) needle-

like clinopyroxene as groundmass crystals; (F) microphenocrysts of iddingsitised olivine; (G) 

altered alkali feldspar xenocryst partially enclosed by quartz crystals; and (H) aegirine 

phenocrysts with magnetite-rich coronas.   

Figure 3 – 40Ar-39Ar age plateau diagrams: (A) Group 1 sample TCS 4.1; (B-C) low-Si 

adakites (sample TCS 7.1 & TCS 7.7); and (D) high-silica adakite sample TCS 59.2. Also 

shown on each plateau diagram is the MSWD (mean square weighted deviation) and P (Chi 

Squared value). 

Figure 4 – Nb/Y vs. SiO2 wt. % immobile element rock classification diagram (from 

Winchester and Floyd, 1977) for all analysed samples. 

Figure 5 – (A) SiO2 wt. % vs. Na2O + K2O wt. % plot (from Irvine and Baragar, 1971) for all 

analysed samples. Shoshonitic low-Si adakite and Group 1 samples are highlighted based 

on the classification scheme from Ewart (1982). (B) A plot from Hastie et al. (2007) of Co vs. 

Th (ppm), for the HSA samples. 

Figure 6 – (A) Y (ppm) vs. Sr/Y (after Hansen et al., 2002) and (B) Yb (ppm) vs. La/Yb plots. 

A calculated Rayleigh fractional crystallisation curve (20% clinopyroxene, 77% plagioclase, 

2% zircon and 1% apatite) is shown on Figure B. The partition coefficients utilised are 

calculated from alkali basalt and trachyandesite compositions (Fujimaki et al., 1986 and Luhr 



et al., 1984) and the amount of fractionation is shown next to the curve (a maximum of 30% 

is shown). 

Figure 7 – Variations in major-element oxides (wt. %) and trace elements (ppm) for the low-
Si adakites, high-Si adakites, Group 1 and 2 samples. Where 

��

��∗
=

��		

��	
�/��

��	
�/�� (Davidson et 

al., 2012). The chondrite normalisation values are from Sun and McDonough (1989).  

Figure 8 – (A-B) Primitive mantle-normalised trace-element variation diagrams; (C-D) 

Chondrite normalisation diagrams (Sun and McDonough, 1989). Data sources: OIB: Sun 

and McDonough (1989); average CAB: Kelemen et al. (2003) and N-MORB: Gale et al. 

(2013).  

Figure 9 – SiO2 wt. % vs. Mg-number (where Mg-number= {molar Mg/(Mg+Fet)}) plot. The 

“high-Mg andesite field” (HMA) represent oceanic eclogitic melts that interacted with the 

mantle wedge (Xu et al., 2000; Bryant et al., 2011). Shuteen Complex (Mongolia) adakites 

from Batkhishig et al. (2010) and Mengyin adakites (east China) from Wang et al. (2016). 

Ningzhen area (east China) samples were interpreted as delaminated lower crust which 

assimilated mantle (Xu et al., 2002). Huichang Basin, SE China (Xiong et al., 2003), and 

Lingqiu Basin, North China (Wang et al., 2006) samples represent melts of an underplated 

basaltic lower crust. The “A + S” field represent Awulale and Sanchakou (Xinjiang Tianshan 

region, China) adakitic rocks and are interpreted as a product of basaltic underplating at the 

base of the lower crust (Zhao et al., 2008).  The “slab” melting and “slab” + peridotite 

(mantle) melting experiments (ME) and the 1-4 GPa “slab melts” field is based on data from 

Rapp et al. (1999, and references therein). The Cenozoic adakite field was generated from 

data within Aguillón-Robles et al. (2001) and Stern and Kilian (1996); Vizcaino Peninsula, 

Mexico; Lautaro; Viedma, Aguilera, Reclus; Mt Burney and Cook Island. 

Figure 10 – Oxide wt. % compositional comparison of the different sample suites with 

adakites and high pressure (≥ 10kbar) partial melts of basalt (Xiong et al., 2003, and 

references therein). Also included are the Carboniferous adakites from the Shuteen 

Complex, Mongolia (Batkhishig et al., 2010). The different fields correspond to: R1 = partial 

melts of alkali basalt at 12-38 kbar; R2-4SW = partial melts of basalts compositionally close to 

N-MORB at 10-32 kbar; WW = partial melts of a low-K, low-Na, high-Mg, high-Ca basalt at 

10 kbar. This adakite field was generated from 11 Cenozoic adakite localities: Aleutian Arc, 

Alaska; Cook Island, Chile; Baja of California, Mexico; Sierra Madre, Mexico; Skagway, 

Alaska; Mindanao, Philippines; Southwest Japan; Austral Andes and Quimsacocha, 

Ecuador. Symbols are the same as in Figure 9.      



Figure 11 – SiO2 wt. % vs. Cr + Ni (ppm) plot. Symbols and data sources are the same as in 

Figure 9.  

Figure 12 – Zr/Sm vs. Nb/Ta plot. The vertical line represents the average Zr/Sm value for 

primitive mantle (25.2; Sun and McDonough, 1989) and melting fields from Foley et al. 

(2002). The adakite field is from Condie (2005). Sample 4/626 from Group 2 is omitted 

(Nb/Ta = 40). 

Figure 13 – (A) Plot of 87Sr/86Sr(i) vs. εNd(t) and (B) a plot of εNd(t) vs. εHf(t). The mixing of 

crustal and basaltic melts field is from Chen et al. (2013). The Cenozoic adakites field is 

generated from: the Andean-Austral volcanic zone (Stern and Kilian, 1996; Lautaro, Viedma, 

Reclus and Mt. Burney); Cerro Pampa, South America (Kay et al., 1993); La Yeguada 

Volcanic Complex, Panama (Defant et al., 1991) and Vizcaino Peninsula, Mexico (Aguillón-

Robles et al. 2001.). The P-MORB field generated from: Alexander Island, Antarctica; SW & 

NW Pacific crust and Venezuela (Barry et al. 2017 and references therein). Mongolian 

lithospheric melts field based on data from Sheldrick et al. (2018, and references therein). 

The depleted mantle (DM) is from Zindler and Hart (1986); mantle array is from Zhang et al. 

(2005); OIB field from Wang et al. (2016; and references therein) and sediment field from 

Vervoort et al. (1999) but excluded the Archean shales. The AFC modelling (equations from 

DePaolo, 1981) utilises a r value 0.5 and the starting composition used sample SH-18. The 

amount of F ranges from 1 to 0.1 and tick marks are in 10% intervals. The granulite 

contaminant (TB95-2.5) is from Barry et al. (2003) and isotopic values are age adjusted to 

230 Ma. Other data from the same cited sources utilised for Figure 9.  

Figure 14 – (A) Plot of 206Pb/204Pb(i) vs. 207Pb/204Pb(i) and (B) a plot of 208Pb/204Pb(i) vs. 
206Pb/204Pb(i). The adakites from Mengyin (China) and adakitic rocks from Liujing (China) are 

age corrected to 131 Ma (Wang et al., 2016). The high-Mg andesite and adakite (Qinling 

Mountains, China) from Xu et al. (2000). The Ningzhen area (China) adakitic samples are 

age corrected to 123 Ma (Xu et al., 2002). The Luozong area (China) adakitic samples are 

age corrected to 136 Ma (Wang et al., 2006). The Awulale adakitic rocks are age corrected 

to 260 Ma (Zhao et al., 2008; n = 2). The Cenozoic adakites field generated from: the 

Andean-Austral volcanic zone (Stern and Kilian, 1996; Lautaro, Viedma, Reclus and Mt. 

Burney); Cerro Pampa, South southern America (Kay et al. 1993) and Vizcaino Peninsula, 

Mexico (Aguillón-Robles et al., 2001.). The Pacific MORB field generated from: Juan de 

Fuca; Gorda; and East Pacific Rise (White et al., 1987; n = 48). Symbols are the same as in 

Figure 13.    
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Table 1: Summary of Argon dating results 
 

Sample  % 39Ar  Steps in  

plateau (n)  

Plateau age (Ma)  
 

±2s  

Isochron age (Ma)  
 

±2s  

Isochron  

MSWD 

TCS 4.1 38.6 15 120.7 ±0.4 119.0 ±2.3 1.42 

TCS 7.1 58.1 7 138.4 ±2.8 139.2 ±6.1 4.7 

TCS 7.7 49.4 12 138.8 ±0.4 138.8 ±0.4 1.29 

TCS 59.2 80.6 24 229.8 ±0.6 230.3 ±1.1 1.28 

 



Table 2: Summary of different geochemical groupings 
 

Group name No. of sample 
experiments 

Pressure Starting material References 

R1                            13                   12-38 kbar      Alkali-rich basalt with high total 
alkalis (Na2O + K2O) and low 
CaO, FeO, MgO and TiO2. 

 

R2-4SW 59 16-32 kbar Compositions close to N- 
MORB. However, some of the 
starting compositions have 
slightly higher Na2O and K2O 
than average N-MORB 
(Hofmann, 1988). 

WW 14 10 kbar low-K and low-Na, high-Mg and 

Rapp et al. (1991), 
(1999); Rapp 

(1995); Rapp and 
Watson (1995). 

Rapp and Watson 
(1995), Sen and 
Dunn (1994) and 
Winther (1996). 

 

 

Wolf and Wyllie 
  high-Ca amphibolite (1994).   



Highlights 
 

• The Mongol-Okhotsk Ocean closed with double-sided subduction. 
• Mesozoic adakite-like lavas were derived from a metasomatised source.   
• Metasomatism processes occurred due to a southward-subducting Mongol-Okhotsk 

slab. 
 

 


