2,784 research outputs found

    Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Get PDF
    Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 μM), an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity

    Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens

    Get PDF
    Purpose: To examine in detail the time-course of changes in Zif268, Egr-1, NGFI-A, and Krox-24 (ZENK) and pre-proglucagon (PPG) RNA transcript levels in the chick retina during periods of increased ocular growth induced by form-deprivation and negative-lens wear. To further elucidate the role of ZENK in the modulation of ocular growth, we investigated the effect of intravitreal injections of the muscarinic antagonist atropine and the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (ADTN), both of which block the development of experimental myopia, on the expression of ZENK in eyes fitted with negative-lenses. Methods: Myopia was induced by fitting translucent diffusers or -10D polymethyl methacrylate (PMMA) lenses over one eye of the chicken. At times from 1 h to 10 days after fitting of the diffusers or negative lenses, retinal RNA transcript levels of the selected genes were determined by semi-quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). For the pharmacology experiments, -10D lenses were fitted over the left eye of chicks for a period of 1h. Intravitreal injections of atropine (10 μl-25 mM), ADTN (10 μl-10 mM), or a vehicle solution were made immediately before fitting of the lenses. Results: ZENK RNA transcript levels were rapidly and persistently down-regulated following the attachment of the optical devices over the eye. With a delay relative to ZENK, PPG transcript levels were also down-regulated. Induced changes in gene expression were similar for both form-deprivation and negative-lens wear. When atropine or ADTN were administered immediately before lens attachment, the rapid down-regulation in ZENK RNA transcript levels normally seen following 1 h of negative-lens wear was not seen, and ZENK transcript levels rose above those values seen in control eyes. However, injection of atropine or ADTN into untreated eyes had no effect on ZENK transcript levels. Conclusions: Both form-deprivation and negative-lens wear modulated the retinal expression of ZENK and PPG RNA transcripts, with a similar time-course and strength of response. The ability of the tested drugs to prevent the down-regulation of ZENK in both lens-induced myopia (LIM) and form-deprivation myopia (FDM) suggests that atropine and ADTN act directly and rapidly on retinal circuits to enhance sensitivity early in the signaling process. These findings suggest that very similar molecular pathways are involved in the changes in eye growth in response to form-deprivation and negative lenses at 1 h after the fitting of optical devices

    Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens

    Get PDF
    Purpose: To examine in detail the time-course of changes in Zif268, Egr-1, NGFI-A, and Krox-24 (ZENK) and pre-proglucagon (PPG) RNA transcript levels in the chick retina during periods of increased ocular growth induced by form-deprivation and negative-lens wear. To further elucidate the role of ZENK in the modulation of ocular growth, we investigated the effect of intravitreal injections of the muscarinic antagonist atropine and the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (ADTN), both of which block the development of experimental myopia, on the expression of ZENK in eyes fitted with negative-lenses.\ud \ud Methods: Myopia was induced by fitting translucent diffusers or −10D polymethyl methacrylate (PMMA) lenses over one eye of the chicken. At times from 1 h to 10 days after fitting of the diffusers or negative lenses, retinal RNA transcript levels of the selected genes were determined by semi-quantitative real-time reverse transcriptase polymerase chain reaction (RT–PCR). For the pharmacology experiments, −10D lenses were fitted over the left eye of chicks for a period of 1h. Intravitreal injections of atropine (10 μl–25 mM), ADTN (10 μl–10 mM), or a vehicle solution were made immediately before fitting of the lenses.\ud \ud Results: ZENK RNA transcript levels were rapidly and persistently down-regulated following the attachment of the optical devices over the eye. With a delay relative to ZENK, PPG transcript levels were also down-regulated. Induced changes in gene expression were similar for both form-deprivation and negative-lens wear. When atropine or ADTN were administered immediately before lens attachment, the rapid down-regulation in ZENK RNA transcript levels normally seen following 1 h of negative-lens wear was not seen, and ZENK transcript levels rose above those values seen in control eyes. However, injection of atropine or ADTN into untreated eyes had no effect on ZENK transcript levels.\ud \ud Conclusions: Both form-deprivation and negative-lens wear modulated the retinal expression of ZENK and PPG RNA transcripts, with a similar time-course and strength of response. The ability of the tested drugs to prevent the down-regulation of ZENK in both lens-induced myopia (LIM) and form-deprivation myopia (FDM) suggests that atropine and ADTN act directly and rapidly on retinal circuits to enhance sensitivity early in the signaling process. These findings suggest that very similar molecular pathways are involved in the changes in eye growth in response to form-deprivation and negative lenses at 1 h after the fitting of optical devices

    CTQ 839: Candidate for the Smallest Projected Separation Binary Quasar

    Get PDF
    We report the discovery of the new double quasar CTQ 839. This B = 18.3, radio quiet quasar pair is separated by 2.1" in BRIH filters with magnitude differences of delta m_B = 2.5, delta m_R = delta m_I = 1.9, and delta m_H = 2.3. Spectral observations reveal both components to be z = 2.24 quasars, with relative redshifts that agree at the 100 km/s level, but exhibit pronounced differences in the equivalent widths of related emission features, as well as an enhancement of blue continuum flux in the brighter component longward of the Ly alpha emission feature. In general, similar redshift double quasars can be the result of a physical binary pair, or a single quasar multiply imaged by gravitational lensing. Empirical PSF subtraction of R and H band images of CTQ 839 reveal no indication of a lensing galaxy, and place a detection limit of R = 22.5 and H = 17.4 for a third component in the system. For an Einstein-de Sitter cosmology and SIS model, the R band detection limit constrains the characteristics of any lensing galaxy to z_lens >= 1 with a corresponding luminosity of L >~ 5 L_*, while an analysis based on the redshift probability distribution for the lensing galaxy argues against the existence of a z_lens >~ 1 lens at the 2 sigma level. A similar analysis for a Lambda dominated cosmology, however, does not significantly constrain the existence of any lensing galaxy. The broadband flux differences, spectral dissimilarities, and failure to detect a lensing galaxy make the lensing hypothesis for CTQ 839 unlikely. The similar redshifts of the two components would then argue for a physical quasar binary. At a projected separation of 8.3/h kpc (Omega_matter = 1), CTQ 839 would be the smallest projected separation binary quasar currently known.Comment: Latex, 23 pages including 5 ps figures; accepted for publication in A

    Multimodal Classification of Parkinson's Disease in Home Environments with Resiliency to Missing Modalities

    Get PDF
    Parkinson’s disease (PD) is a chronic neurodegenerative condition that affects a patient’s everyday life. Authors have proposed that a machine learning and sensor-based approach that continuously monitors patients in naturalistic settings can provide constant evaluation of PD and objectively analyse its progression. In this paper, we make progress toward such PD evaluation by presenting a multimodal deep learning approach for discriminating between people with PD and without PD. Specifically, our proposed architecture, named MCPD-Net, uses two data modalities, acquired from vision and accelerometer sensors in a home environment to train variational autoencoder (VAE) models. These are modality-specific VAEs that predict effective representations of human movements to be fused and given to a classification module. During our end-to-end training, we minimise the difference between the latent spaces corresponding to the two data modalities. This makes our method capable of dealing with missing modalities during inference. We show that our proposed multimodal method outperforms unimodal and other multimodal approaches by an average increase in F1-score of 0.25 and 0.09, respectively, on a data set with real patients. We also show that our method still outperforms other approaches by an average increase in F1-score of 0.17 when a modality is missing during inference, demonstrating the benefit of training on multiple modalities

    Serological Patterns of Brucellosis, Leptospirosis and Q Fever in Bos indicus Cattle in Cameroon

    Get PDF
    Brucellosis, leptospirosis and Q fever are important infections of livestock causing a range of clinical conditions including abortions and reduced fertility. In addition, they are all important zoonotic infections infecting those who work with livestock and those who consume livestock related products such as milk, producing non-specific symptoms including fever, that are often misdiagnosed and that can lead to severe chronic disease. This study used banked sera from the Adamawa Region of Cameroon to investigate the seroprevalences and distributions of seropositive animals and herds. A classical statistical and a multi-level prevalence modelling approach were compared. The unbiased estimates were 20% of herds were seropositive for Brucella spp. compared to 95% for Leptospira spp. and 68% for Q fever. The within-herd seroprevalences were 16%, 35% and 39% respectively. There was statistical evidence of clustering of seropositive brucellosis and Q fever herds. The modelling approach has the major advantage that estimates of seroprevalence can be adjusted for the sensitivity and specificity of the diagnostic test used and the multi-level structure of the sampling. The study found a low seroprevalence of brucellosis in the Adamawa Region compared to a high proportion of leptospirosis and Q fever seropositive herds. This represents a high risk to the human population as well as potentially having a major impact on animal health and productivity in the region

    An automatic gait analysis pipeline for wearable sensors: a pilot study in Parkinson’s disease

    Get PDF
    The use of wearable sensors allows continuous recordings of physical activity from participants in free-living or at-home clinical studies. The large amount of data collected demands automatic analysis pipelines to extract gait parameters that can be used as clinical endpoints. We introduce a deep learning-based automatic pipeline for wearables that processes tri-axial accelerometry data and extracts gait events—bout segmentation, initial contact (IC), and final contact (FC)—from a single sensor located at either the lower back (near L5), shin or wrist. The gait events detected are posteriorly used for gait parameter estimation, such as step time, length, and symmetry. We report results from a leave-one-subject-out (LOSO) validation on a pilot study dataset of five participants clinically diagnosed with Parkinson’s disease (PD) and six healthy controls (HC). Participants wore sensors at three body locations and walked on a pressure-sensing walkway to obtain reference gait data. Mean absolute errors (MAE) for the IC events ranged from 22.82 to 33.09 milliseconds (msecs) for the lower back sensor while for the shin and wrist sensors, MAE ranges were 28.56–64.66 and 40.19–72.50 msecs, respectively. For the FC-event detection, MAE ranges were 29.06–48.42, 40.19–72.70 and 36.06–60.18 msecs for the lumbar, wrist and shin sensors, respectively. Intraclass correlation coefficients, ICC(2,k), between the estimated parameters and the reference data resulted in good-to-excellent agreement (ICC ≥ 0.84) for the lumbar and shin sensors, excluding the double support time (ICC = 0.37 lumbar and 0.38 shin) and swing time (ICC = 0.55 lumbar and 0.59 shin). The wrist sensor also showed good agreements, but the ICCs were lower overall than for the other two sensors. Our proposed analysis pipeline has the potential to extract up to 100 gait-related parameters, and we expect our contribution will further support developments in the fields of wearable sensors, digital health, and remote monitoring in clinical trials

    A multimodal dataset of real world mobility activities in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder characterised by motor symptoms such as gait dysfunction and postural instability. Technological tools to continuously monitor outcomes could capture the hour-by-hour symptom fluctuations of PD. Development of such tools is hampered by the lack of labelled datasets from home settings. To this end, we propose REMAP (REal-world Mobility Activities in Parkinson’s disease), a human rater-labelled dataset collected in a home-like setting. It includes people with and without PD doing sit-to-stand transitions and turns in gait. These discrete activities are captured from periods of free-living (unobserved, unstructured) and during clinical assessments. The PD participants withheld their dopaminergic medications for a time (causing increased symptoms), so their activities are labelled as being “on” or “off” medications. Accelerometry from wrist-worn wearables and skeleton pose video data is included. We present an open dataset, where the data is coarsened to reduce re-identifiability, and a controlled dataset available on application which contains more refined data. A use-case for the data to estimate sit-to-stand speed and duration is illustrated
    corecore