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ABSTRACT
Parkinson’s disease (PD) is a slowly progressive, debilitating neu-
rodegenerative disease which causes motor symptoms including
gait dysfunction. Motor fluctuations are alterations between peri-
ods with a positive response to levodopa therapy ("on") and periods
marked by re-emergency of PD symptoms ("off") as the response
to medication wears off. These fluctuations often affect gait speed
and they increase in their disabling impact as PD progresses. To
improve the effectiveness of current indoor localisation methods, a
transformer-based approach utilising dual modalities which pro-
vide complementary views of movement, Received Signal Strength
Indicator (RSSI) and accelerometer data from wearable devices, is
proposed. A sub-objective aims to evaluate whether indoor locali-
sation, including its in-home gait speed features (i.e. the time taken
to walk between rooms), could be used to evaluate motor fluctua-
tions by detecting whether the person with PD is taking levodopa
medications or withholding them. To properly evaluate our pro-
posed method, we use a free-living dataset where the movements
and mobility are greatly varied and unstructured as expected in
real-world conditions. 24 participants lived in pairs (consisting of
one person with PD, one control) for five days in a smart home with
various sensors. Our evaluation on the resulting dataset demon-
strates that our proposed network outperforms other methods for
indoor localisation. The sub-objective evaluation shows that precise
room-level localisation predictions, transformed into in-home gait
speed features, produce accurate predictions on whether the PD
participant is taking or withholding their medications.
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1 INTRODUCTION
Parkinson’s disease (PD) is a debilitating neurodegenerative disease
affecting around 6 million people worldwide. It is characterised by
a variety of movement-related (motor) symptoms, such as slowness
of movement, rigidity and gait dysfunction [23]. A complication of
the mainstay medication used to treat PD, levodopa, is that patients
start to experience motor symptom fluctuations related to medica-
tion timings. When levodopa is first started, patients experience a
smooth and prolonged therapeutic response. As disease progresses
(and in a substantial proportion of patients within the first five
years), patients start to ”wear off” from their medications before
the next dose, causing a reemergence of parkinsonian symptoms
including slowness of gait. These symptom fluctuations impair pa-
tients’ quality of life and often necessitate changes in medication
regime. Motor symptoms can become severe enough to hinder the
subject’s gait and movement around their own house [49]. As a
result, the subject may be more likely to stay in one room; once
they move, they may typically need more time to transition be-
tween rooms. Such outcomes could be used to detect ON and OFF
medication motor fluctuations in PD and to inform clinicians and
patients of such symptoms.

4273



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ferdian Jovan et al.

Furthermore, a sensitive and accurate ecologically-validated
biomarker of PD progression is currently lacking [15], resulting in
multiple failures of clinical trials testing putative neuroprotective
therapies in PD [11, 21, 27]. Gait parameters are sensitive to disease
progression symptom change in unmedicated early-stage PD [52]
and show promise as markers of disease progression [44], making
measuring gait parameters potentially of use in clinical trials of
disease-modifying interventions which typically recruit recently
diagnosed patients [42]. Clinical evaluation of PD is normally un-
dertaken in an artificial clinic or laboratory environment where
only a snapshot view of the individual’s motor function can be cap-
tured. Constant monitoring could capture symptom progression,
including motor fluctuations, and sensitively quantify them over
time [36].

Although PD symptoms including gait and balance parameters
can be measured continuously at home (with varying degrees of
reliability and accuracy) by wearable devices containing inertial
motor units (IMUs) or smartphones [12, 14, 37, 38], this data does
not show the context in which the measurements are taken (for
example where someone is at the time of the symptom). Knowing
which room someone is in (indoor localisation) could add valuable
holistic information to the interpretation of symptoms of PD. For
example, symptoms like freezing of gait [2] and turning in gait
[18] vary according to the nature of the setting the person is in,
so knowing where someone is could help predict such symptoms
or interpret their severity. Furthermore, knowing how much time
someone spends alone or with others in a room is a step towards
understanding their societal participation [25], which affects quality
of life in PD [13]. Localisation could also add valuable information in
the measurement of other behaviors such as non-motor symptoms
such as urinary function [16, 20] (e.g. how many times someone
visits the toilet room overnight).

To perform indoor localisation in home environments, IoT-based
platforms with sensors capturing various modalities of data com-
bined with machine learning can be used to provide an unobtrusive
and continuous localisation [39]. Typically, many of these tech-
niques take advantage of the radio-frequency signals, the Received
Signal Strength Indication (RSSI), emitted by wearables and mea-
sured at access points (AP) throughout a home. These signals to
estimate the user’s position from the perceived signal strength,
thereby creating radio-map features for each room [22]. To provide
more accurate localisation, accelerometer data measured by wear-
able devices, equipped with RSSI measured at receivers, can also be
used as it provides a means to distinguish different activities (e.g.,
walking vs standing). Furthermore, as some activities are tied to
particular rooms (e.g. stirring a pan on the hob is very likely to be
in a kitchen), accelerometer data may enrich RSSI in differentiating
adjacent rooms, which RSSI alone may struggle with [35].

If accelerometer data are to provide extra features for separating
adjacent rooms, greater consideration must be given to data gen-
eralisation across different PD patients. As PD is a heterogeneous
disease, the symptoms experienced and their severity may vary
from one patient to another [19]. These severe symptoms, such as
tremor, may affect the generalisation of accelerometer data which
are prone to bias and accumulated errors [34], especially those
worn on the patient’s wrists, which is a common and well accepted
placement location [17]. Naively combining the accelerometer data

with the RSSI may impair the performance of indoor localisation
due to differing levels of tremor manifesting in the acceleration
signal. In this work, we make two main contributions.

(1) We describe the utilisation of RSSI enriched by the accelerom-
eter data to perform room-level localisation. Our proposed
network1 intelligently chooses accelerometer features which
may improve the RSSI performance in performing indoor
localisation. To properly evaluate our proposed method, we
use a free-living (a person living their life freely, without ex-
ternal intervention) dataset created by our group, where the
movements and mobility are greatly varied and unstructured
as expected in real-world conditions. Our evaluation on such
a unique dataset, which includes subjects with and without
PD, demonstrates that our proposed network outperforms
other approaches in all cross-validation categories.

(2) We also demonstrate how the accurate room-level localisa-
tion predictions can be transformed into in-home gait speed
biomarkers (e.g. number of room-to-room transition, room-
to-room transition duration) which can be used to effectively
classify the OFF or ON medication state of a PD patient from
this pilot study data.

2 RELATEDWORK
There has been substantial work using home-based passive sensing
systems to assess how the activities and behaviour of people with
neurological disease (mainly cognitive dysfunction) change over
time [33, 55]. There is very limited work assessing room use in the
home setting in people with Parkinson’s.

However, gait quantification using wearables or smartphones is
an area where a significant amount of work has been done (with
several systematic reviews such as these[4, 7]). Cameras can detect
also Parkinsonian gait and some gait features including step length
and average walking speed [46]. Time of flight devices (which mea-
sure distances between the subject and the camera [24]) have been
used to assess medication adherence through gait analysis [45].
From free-living data, one approach to gait and room use evalua-
tion in home settings is by emitting and detecting radio waves to
non-invasively track movement. Gait analysis using radio wave
technology shows promise to track disease progression, severity
and medication response [30]. However, this approach cannot iden-
tify who is doing the movement and also suffers from technical
issues when the radio waves are occluded by another object. Much
of the work done so far using video to track PD symptoms has fo-
cused on the performance of structured clinical rating scales during
telemedicine consultations as opposed to naturalistic behaviour
[41], and there have been some privacy concerns around the use of
video data at home [48].

RSSI data produced from wearable devices is a type of data with
fewer privacy concerns; it can be measured continuously and unob-
trusively over long periods of time to capture real-world function
and behavior in a privacy-friendly way. In indoor localisation, fin-
gerprinting using RSSI is the typical technique used to estimate
the wearable (user) location by using signal strength data repre-
senting a coarse and noisy estimate of the distance access point

1Code available at https://github.com/ferdianjovan/Multihead-Dual-Convolutional-
Self-Attention
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from the wearable [5, 40]. RSSI signals are not stable, they fluctuate
randomly due to shadowing, fading and multi-path effects. How-
ever, many techniques have been proposed in recent years to tackle
these fluctuations, and, indirectly, improve the localisation accu-
racy. Some of the works [54] utilise deep neural networks (DNN) to
generate coarse positioning estimates from RSSI signals, which are
then refined by a hidden Markov model (HMM) to produce a final
estimate location. Other works, [22], try to utilise a time-series of
RSSI data and exploit the temporal connections within each access
point to estimate room-level position. A CNN is used to build lo-
calisation models to further leverage the temporal dependencies
across time-series readings.

It has been suggested that we cannot rely on RSSI alone for
indoor localisation in home environments for PD subjects due to
shadowing rooms with tight separation [32, 35, 39]. Sansano et al.
combine RSSI signals and inertial measurement unit (IMU) data
to test the viability of leveraging other sensors in aiding the posi-
tioning system to produce a more accurate location estimate [39].
Classic machine learning approaches such as Random Forest (RF),
Artificial Neural Network (ANN), k-Nearest Neighbour (k-NN) are
tested, and the result shows that the RF outperforms other methods
in tracking a person in indoor environments. Poulose et al. combine
smartphone IMU sensor data and Wi-Fi received signal strength
indication (RSSI) measurements to estimate the exact location (in
Euclidean position X, Y) of a person in indoor environments [35].
The proposed sensor fusion framework uses location fingerprinting
in combination with a pedestrian dead reckoning (PDR) algorithm
to reduce the positioning errors.

Looking at thismulti-modality classification / regression problem
from a timeseries perspective, there has been a lot of explorations
in tackling a problem where each modality can be categorised as
multivariate timeseries data [8, 28, 51]. LSTM and attention layers
are often used in parallel to directly transform raw multivariate
time series data into low-dimensional feature representation for
each modality. Later, various processed is done to further extract
correlations across modalities through the use of various layers
(e.g. concatenation, CNN layer, transformer, self-attention) [28, 51].
Our work is inspired by Sansano-Sansano et al. [39] where we only
utilise accelerometer data to enrich the RSSI, instead of utilising all
IMU sensors, in order to reduce battery consumption. In addition,
unlike Sansano-Sansano et al. who stop at predicting room locations,
we go a step further and use room-to-room transition behaviours,
as features for a binary classifier predicting whether people with
PD are taking their medications or withholding them.

3 COHORT AND DATASET
Dataset. This dataset was collected using wristband wearable sen-
sors, one on each wrist of all participants, containing tri-axial ac-
celerometers2 and 10 Access Points (APs) placed through the res-
idential home (see Fig. 1 for house layout and AP location), each
measuring the RSSI [26]. The wearable devices wirelessly transmit
data using the Bluetooth Low Energy (BLE) standard which can be
received by the 10 APs. Each AP records the transmitted packets

2The wearables are custom-designed and purposefully do not utilise gyroscope and
magnetometer sensors to increase battery life.

Figure 1: Layout of the residential home setting.

from the wearable sensor which contains the accelerometer read-
ings sampled at 30Hz, with each AP recording RSSI values sampled
at 5 Hz.

The dataset contains 12 spousal/parent-child/friend-friend pairs
(24 participants in total) living freely in a smart home for five days.
Each pair consists of one person with PD and one person as the
healthy control volunteer (HC). This pairing was chosen to enable
PD vs HC comparison, for safety reasons and also to increase the
naturalistic social behaviour (particularly amongst the spousal pairs
who already lived together). From the 24 participants, five females
and seven males have PD. The average age of the participants
is 60.25 (PD 61.25, Control 59.25) and the average time since PD
diagnosis for the person with PD is 11.3 years (range 0.5-19).

To measure the accuracy of the machine learning models, wall-
mounted cameras are installed in the ground floor of the house
which capture red-green-blue (RGB) and depth data 2-3 hours
daily (during daylight hours at times when participants were at
home). The videos were then manually annotated to the nearest
millisecond to provide localisation labels. Multiple human labellers
used a widely available software called ELAN [1] to watch up to 4
simultaneously-captured video files at a time. The resulting labelled
data recorded the kitchen, hallway, dining room, living room, stairs,
and porch. The duration of labelled data recorded by the cameras for
PD and HC is 72.84 and 75.31 hours, respectively, which provides
a relatively balanced label set for our room-level classification3.
Finally, to evaluate the ON/OFF medication state, participants with
PD were asked to withhold their dopaminergic medications so that
they were in the practically-defined OFF medications state for a
temporary period of several hours during the study. Withholding
medications removes their mitigation on symptoms, leading to
mobility deterioration which can include slowing of gait.

Data pre-processing for indoor localisation. The data from
the two wearable sensors worn by each participant were combined
at each time point, based on their modality, i.e. twenty RSSI values
(corresponding to 10 APs for each of the two wearable sensors),
and accelerometry traces in six spatial directions (corresponding
to the three spatial directions (x, y, z) for each wearable) were
recorded at each time point. The accelerometer data is resampled
to 5Hz to synchronise the data with RSSI values. With a 5-second

3Approaches generalise to all rooms over the entire period, however we limit the time
frame and rooms to only those that were manually annotated (on ground floor).

4275



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ferdian Jovan et al.

time window and 5Hz sampling rate, each RSSI data sample has
an input of size (25 x 20) and accelerometer data has an input of
size (25 x 6). Imputation for missing values, specifically for RSSI
data, is applied by replacing the missing values with a value that
is not possible normally (i.e., -120dB). Missing values exist in RSSI
data whenever the wearable is out of range of an AP. Finally, all
time-series measurements by the modalities are normalised.

Data pre-processing for medication state. Our main focus is
for our neural network to continuously produce room predictions
which are then transformed into in-home gait speed features, par-
ticularly for persons with PD. We hypothesise that during their OFF
medication state, the deterioration in mobility of a person with PD
is exhibited by how they transition between rooms. These features
include ‘Room-to-room Transition Duration’, and the ‘Number of
Transitions’ between two rooms. ‘Number of Transitions’ repre-
sents how active PD subjects are within a certain period of time,
while ‘Room-to-room Transition Duration’ may provide insight
into how severe their disease is by the speed with which they navi-
gate their home environment. With the layout of the house where
participants stayed (see Fig. 1), the hallway is used as a hub con-
necting all other rooms labelled, and ‘Room-to-room Transition’
shows the transition duration (in seconds) between two rooms
connected by the hallway. The transition between (1) kitchen and
living room, (2) kitchen and dining room, and (3) dining room and
living room are chosen as the features due to their commonality
across all participants. For these features, we limit the transition
time duration (i.e. the time spent in the hallway) to 60 seconds
to exclude transitions likely to be prolonged and thus may not be
representative of the person’s mobility.

These in-home gait speed features are produced by an indoor-
localisation model by feeding RSSI signals and accelerometer data
from 12 PD participants from 6 a.m. to 10 p.m. daily which are
aggregated into 4 hour windows. From this, each PD participant
will have 20 data samples (four data samples for each of the five
days), each of which contains six features (three for the mean of
room-to-room transition duration, and three for the number of
room-to-room transitions). There is only one 4-hour window during
which the person with PD is OFF medications. These samples are
then used to train a binary classifier4 determining whether a person
with PD is ON or OFF their medications.

For a baseline comparison to the in-home gait speed features,
demographic features which include age, gender, years of PD, and
MDS-UPDRS III score (the gold-standard clinical rating scale score
used in clinical trials to measure motor disease severity in PD) are
chosen. Two MDS-UPDRS III scores are assigned for each PD par-
ticipant; one is assigned when a person with PD is ON medications,
and the other one is assigned when a person with PD is OFF med-
ications. For each in-home gait speed feature data sample, there
will be a corresponding demographic feature data sample which
are used to train a different binary classifier to predict whether a
person with PD is ON or OFF medications.

Ethical approval. Full approval from NHS Wales Research
Ethics Committee 6was granted on 17𝑡ℎ December 2019, andHealth
Research Authority and Health and Care Research Wales approval

4The Random Forest is chosen as a binary classifier; It is not the one used for indoor
localisation.

Figure 2: MDCSA architecture.

confirmed on 14𝑡ℎ January 2020; the research was conducted in
accord with the Helsinki Declaration of 1975; written informed
consent was gained from all study participants. In order to protect
participant privacy supporting data is not shared openly. It will
be made available to bona fide researchers subject to a data access
agreement. If you wish to apply to access this data, please email
data-bris@bristol.ac.uk.

4 METHODOLOGIES AND FRAMEWORK
We introduce Multihead Dual Convolutional Self Attention (MD-
CSA), a deep neural network that utilises dual modalities for indoor
localisation in home environments. The network tackles two chal-
lenges that arise from multimodality and time-series data:

(1) Capturing multivariate features and filtering multi-
modal noises. RSSI signals, which are measured at multiple
access points within a home received from wearable commu-
nication, have been widely used for indoor localisation [22],
typically using a fingerprinting technique that produces a
ground truth radio map of a home. Naturally, the wearable
also produces acceleration measurements which can be used
to identify typical activities performed in a specific room,
and thus we can explore if accelerometer data will enrich the
RSSI signals, in particular to help distinguish adjacent rooms,
which RSSI-only systems typically struggle with. If it will,
how can we incorporate these extra features (and modalities)
into the existing features for accurate room predictions, par-
ticularly in the context of PD where the acceleration signal
may be significantly impacted by the disease itself?

(2) Modelling local and global temporal dynamics. The
true correlations between inputs both intra-modality (i.e.
RSSI signal among access points) and inter-modality (i.e.
RSSI signal against accelerometer fluctuation) are dynamic.
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These dynamics can affect one another within a local context
(e.g. cyclical patterns) or across long-term relationships. Can
we capture local and global relationships across different
modalities?

The MDCSA architecture, shown in Figure 2, addresses the afore-
mentioned challenges through a series of neural network layers
which are described in the following sections.

4.1 Modality Positional Embedding
Due to different data dimensionality between RSSI and accelerome-
ter, coupled with the missing temporal information, a linear layer
with a positional encoding is added to transform both RSSI and
accelerometer data into their respective embeddings. Suppose we
have a collection of RSSI signals x𝑟 = [x𝑟1, . . . , x

𝑟
𝑇
] ∈ R𝑇×𝑟 , and ac-

celerometer data x𝑎 = [x𝑎1 , . . . , x
𝑎
𝑇
] ∈ R𝑇×𝑎 within 𝑇 time unit,

where x𝑟𝑡 =
[
𝑥1𝑡 , . . . , 𝑥

𝑟
𝑡

]
represents RSSI signals from 𝑟 access

points, and x𝑎𝑡 =
[
𝑥1𝑡 , . . . , 𝑥

𝑎
𝑡

]
represents accelerometer data from

𝑎 spatial directions at time 𝑡 with 𝑡 ≤ 𝑇 . Given feature vectors
x𝑢𝑡 =

[
𝑥1𝑡 , . . . , 𝑥

𝑢
𝑡

]
with 𝑢 ∈ {𝑟, 𝑎} representing RSSI or accelerome-

ter data at time 𝑡 , and 𝑡 ≤ 𝑇 representing time index, a positional
embedding h𝑢𝑡 for RSSI or accelerometer can be obtained by:

h𝑢𝑡 =
(
W𝑢x𝑢𝑡 + b𝑢

)
+ −→
𝑝𝑡 (1)

where W𝑢 ∈ R𝑢×𝑑 , and b𝑢 ∈ R𝑑 are weight and bias to learn, 𝑑
is the embedding dimension, and −→

𝑝𝑡 ∈ R𝑑 is the corresponding
position encoding at time 𝑡 .

4.2 Locality Enhancement with Self-Attention
As it is time series data, the importance of an RSSI or accelerometer
value at each point in time can be identified in relation to its sur-
rounding values - such as cyclical patterns, trends, or fluctuations.
Utilising historical context that can capture local patterns on top of
point-wise values, performance improvements in attention-based
architectures can be achieved. One straightforward option is to
utilise a recurrent neural network such as a long-short term mem-
ory (LSTM) approach. However, in LSTM layers, the local context
is summarised based on the previous context and the current input.
Two similar patterns separated by a long period of time might have
different context if they are processed by the LSTM layers [3]. We
utilise a combination of causal convolution layers and self-attention
layers which we name Dual Convolutional Self-Attention (DCSA).
The DCSA takes in a primary input x̂1 ∈ R𝑇×𝑑 and a secondary
input x̂2 ∈ R𝑇×𝑑 and yields:

𝐷𝐶𝑆𝐴𝑘

(
x̂1, x̂2

)
= 𝐺𝑅𝑁

(
𝑁𝑜𝑟𝑚(Φ(x̂1) + x̂1),
𝑁𝑜𝑟𝑚(Φ(x̂2) + x̂2)

) (2)

with

Φ
(
x̂
)
= 𝑆𝐴

(
Φ𝑘 (x̂) WQ,Φ𝑘 (x̂) WK, x̂ WV

)
(3)

where𝐺𝑅𝑁 (.) is Gated Residual Network (GRN), introduced in [28],
to integrate dual inputs into one integrated embedding, 𝑁𝑜𝑟𝑚(.)
is a standard layer normalisation, 𝑆𝐴(.) is a scaled dot-product
self-attention introduced in [47], Φ𝑘 (.) is a 1D-convolutional layer
with a kernel size {1, 𝑘} and a stride 1, WK ∈ R𝑑×𝑑 , WQ ∈ R𝑑×𝑑

,𝑊V ∈ R𝑑×𝑑 are weights for keys, queries and values of the self-
attention layer, and 𝑑 is the embedding dimension. Note that all
weights for GRN are shared across each time step 𝑡 .

4.3 Multihead Dual Convolutional
Self-Attention

Our approach employs a self-attention mechanism introduced in
[47] to capture global dependencies across time steps. It is embedded
as part of the DCSA architecture. Inspired by Vaswani et al. [47] in
utilising multihead self-attention, we utilise our DCSA with various
kernel lengths with the same aim: allowing asymmetric long-term
learning. The multihead DCSA, shown as part in Figure 2, takes in
two inputs x̂1, x̂2 ∈ R𝑇×𝑑 and yields:

𝑀𝐷𝐶𝑆𝐴𝑘1,...,𝑘𝑛

(
x̂1, x̂2

)
= Φ𝑛

(
Φ𝑘1,...,𝑘𝑛 (x̂1, x̂2)

)
(4)

with
Φ𝑘1,...,𝑘𝑛

(
x̂1, x̂2

)
= 𝑆𝐴

(
Ξ𝑘1,...,𝑘𝑛 (x̂1, x̂2) WQ,

Ξ𝑘1,...,𝑘𝑛 (x̂1, x̂2) WK,

Ξ𝑘1,...,𝑘𝑛 (x̂1, x̂2) WV
) (5)

Ξ𝑘1,...,𝑘𝑛
(
x̂1, x̂2

)
=
[
𝐷𝐶𝑆𝐴𝑘1 (x̂1, x̂2), . . . , 𝐷𝐶𝑆𝐴𝑘𝑛 (x̂1, x̂2)

]
(6)

whereΦ𝑛 (.) is a 1D-convolutional layer with a kernel size {1, 𝑛} and
a stride 𝑛, WK ∈ R𝑑×𝑑 , WQ ∈ R𝑑×𝑑 ,𝑊V ∈ R𝑑×𝑑 are weights for
keys, queries and values of the self-attention layer, and Ξ𝑘1,...,𝑘𝑛 (.)
concatenates the output of each 𝐷𝐶𝑆𝐴𝑘 (.) in temporal order. For
regularisation, a normalisation layer followed by a dropout layer is
added after Equation 4.

Following the modality positional embedding layer in subsec-
tion 4.1, the positional embeddings of RSSI h𝑟 = [h𝑟1, . . . , h

𝑟
𝑇
] and

accelerometer h𝑎 = [h𝑎1 , . . . , h
𝑎
𝑇
], produced by Eq. 1, are then fed

to an MDCSA layer with various kernel sizes [𝑘1, . . . , 𝑘𝑛]:
𝐡 = 𝑀𝐷𝐶𝑆𝐴𝑘1,...,𝑘𝑛

(
h𝑟 , h𝑎

)
(7)

to yield 𝐡 =
[
𝔥1, . . . , 𝔥𝑇

]
with 𝔥𝑡 ∈ R𝑑 and 𝑡 ≤ 𝑇 .

4.4 Final Layer and Loss Calculation
We apply two different layers to produce two different outputs
during training. The room-level predictions are produced via a
single conditional random field (CRF) layer in combination with
a linear layer applied to the output of Eq. 7 to produce the final
predictions as

𝑦𝑡 = 𝐶𝑅𝐹
(
Φ(𝔥𝑡 )

)
(8)

Φ
(
𝔥𝑡
)
= W𝑝𝔥𝑡 + b𝑝 (9)

whereW𝑝 ∈ R𝑑×𝑚 , and b𝑝 ∈ R𝑚 are weight and bias to learn,𝑚 is
the number of room locations, and 𝐡 =

[
𝔥1, . . . , 𝔥𝑇

]
∈ R𝑇×𝑑 is the

refined embedding produced by Eq. 7. Even though the transformer
can take into account neighbour information before generating
the refined embedding at time step 𝑡 , its decision is independent;
it does not take into account the actual decision made by other
refined embeddings 𝑡 . We use a CRF layer to cover just that, i.e.
to maximise the probability of the refined embeddings of all time
steps, so it can better model cases where refined embeddings closest
to one another must be compatible (i.e. minimising the possibility
for impossible room transitions). When finding the best sequence
of room location 𝑦𝑡 , the Viterbi Algorithm is used as a standard for
the CRF layer.
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For the second layer, we choose a particular room as a reference
and perform a binary classification at each time step 𝑡 . The binary
classification is produced via a linear layer applied to the refined
embedding 𝐡 as

𝛽𝑡 = W𝛽𝔥𝑡 + b𝛽 (10)

whereW𝛽 ∈ R𝑑×1, and b𝛽 ∈ R are weight and bias to learn, and 𝛽 =[
𝛽1, . . . , 𝛽𝑇

]
∈ R𝑇 is the target probabilities for the referenced room

within time window𝑇 . The reason to perform a binary classification
against a particular room is because of our interest in improving the
accuracy in predicting that room. In our application, the room of
our choice is the hallway where it will be used as a hub connecting
any other room.

Loss Functions. During the training process, the MDCSA net-
work produces two kinds of outputs. Emission outputs (outputs pro-
duced by Equation 9 prior to prediction outputs) ê =

[
Φ
(
𝔥1
)
, . . . ,Φ

(
𝔥𝑇

) ]
are trained to generate the likelihood estimate of room predictions,
while the binary classification output 𝛽 = [𝛽1, . . . , 𝛽𝑇 ] is used to
train the probability estimate of a particular room. The final loss
function can be formulated as a combination of both likelihood and
binary cross entropy loss function described as:

L(ê, y, 𝛽, 𝛽) = L𝑁𝐿𝐿 (ê, y) +
𝑇∑︁
𝑖=1

L𝐵𝐶𝐸 (𝛽𝑖 , 𝛽𝑖 ) (11)

L𝑁𝐿𝐿 (ê, y) =
∑︁
�̂�

𝑇∑︁
𝑖=0

𝑃
(
Φ
(
𝔥𝑖
)
| 𝑦𝑖

)
𝑇
(
𝑦𝑖 | 𝑦𝑖−1

)
−

𝑇∑︁
𝑖=0

𝑃
(
Φ
(
𝔥𝑖
)
| 𝑦𝑖

)
𝑇
(
𝑦𝑖 | 𝑦𝑖−1

) (12)

L𝐵𝐶𝐸 (𝛽, 𝛽) = − 1
𝑇

𝑇∑︁
𝑖=0

𝛽𝑖 𝑙𝑜𝑔(𝛽𝑖 ) + (1 − 𝛽𝑖 ) 𝑙𝑜𝑔(1 − 𝛽𝑖 ) (13)

where L𝑁𝐿𝐿 (.) represents the negative log-likelihood and L𝐵𝐶𝐸 (.)
denotes the binary cross entropy, y = [𝑦1, . . . , 𝑦𝑇 ] ∈ R𝑇 is the
actual room locations, and 𝛽 = [𝛽1, . . . , 𝛽𝑇 ] ∈ R𝑇 is the binary
value whether at time 𝑡 the room is the referenced room or not.
𝑃 (𝑥 | 𝑦) denotes the conditional probability, and 𝑇 (𝑦𝑖 | 𝑦𝑖−1)
denotes the transition matrix cost of having transitioned from 𝑦𝑖−1
to 𝑦.

5 EXPERIMENTS AND RESULTS
We compare our proposed network, MDCSA1,4,75 (MDCSA with 3
kernels of size 1, 4, and 7), with:

• Random Forest (RF) as a baseline technique which has been
shown to work well for indoor localisation [43],

• TENER [50] which is a modified transformer encoder in
combination with a CRF layer representing a model with
capability to capture global dependency and enforce depen-
dencies in temporal aspects,

• DTML [51] represents the state-of-the-art model for multi-
modal and multivariate time series with a transformer en-
coder to learn asymmetric correlations across modalities,

5We drop the ‘1,4,7’ part when the context is clear.

• Alt DTML6 representing DTML with a GRN layer replacing
the context aggregation layer and CRF layer added as the
last layer,

• MDCSA1,4,7 4APS, as an ablation study, with our proposed
network (i.e. MDCSA1,4,7) using 4 access points for the RSSI
(instead of 10 access points) and accelerometer data (ACCL)
as its input features,

• MDCSA1,4,7 RSSI, as an ablation study, with our proposed
network using only RSSI, without ACCL, as its input features,
and

• MDCSA1,4,7 4APS RSSI, as an ablation study, with our pro-
posed network using only 4 access points for the RSSI as its
input features.

For RF, all the time series features of RSSI and accelerometry are
flattened and merged into one feature vector for room-level localisa-
tion. For TENER, at each time step 𝑡 , RSSI x𝑟𝑡 and accelerometer x𝑎𝑡
features are combined via a linear layer before they are processed
by the networks. A grid search on the parameters of each network
is performed to find the best parameter for each model. The parame-
ters to tune are: the embedding dimension 𝑑 in {128, 256}, the num-
ber of epochs in {200, 300}, and the learning rate in {0.01, 0.0001}.
The dropout rate is set to 0.15, and the RAdam optimiser [29] in
combination with Look-Ahead algorithm [53] is used for the train-
ing with early stopping using the validation performance. For the
RF, we perform a cross-validated parameter search for the number
of trees ({200, 250}), the minimum number of samples in a leaf node
({1, 5}), and whether a warm start is needed ({𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}). The
Gini impurity is used to measure splits.

Evaluation Metrics. We are interested in developing a system
to monitor PD motor symptoms in home environments. For exam-
ple, we will consider if there is any significant difference in the
performance of the system when it is trained with PD data com-
pared to being trained with healthy control (HC) data. We tailored
our training procedure to test our hypothesis by performing varia-
tions of cross-validation. Apart from training our models on all HC
subjects (ALL-HC), we also perform four different kinds of cross-
validation: 1) We train our models on one PD subject (LOO-PD),
2) We train our models on one HC subject (LOO-HC), 3) We take
one HC subject and use only roughly four minutes worth of data to
train our models (4m-HC), 4) We take one PD subject and use only
roughly four minutes worth of data to train our models (4m-PD).
For all of our experiments, we test our trained models on all PD
subjects (excluding the one used as training data for LOO-PD and
4m-PD). For room-level localisation accuracy, we use precision and
weighted F1-score, all averaged and standard deviated across the
test folds.

To showcase the importance of in-home gait speed features in
differentiating the medication state of a person with PD, we first
compare how accurate the ‘Room-to-room Transition’ duration
produced by each network is to the ground truth (i.e. annotated
location). We hypothesise that the more accurate the transition
is compared to the ground truth, the better mobility features are
for medication state classification. For the medication state clas-
sification, we then compare two different groups of features with
two simple binary classifiers: 1) the baseline demographic features

6Our attempt to see the effect of GRN and CRF layer on a SOTA model.
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Table 1: Room-level and medication state accuracy of all models. Standard deviation is shown in (.), the best performer is bold,
while the second best is italicized. Note that our proposed model is the one named MDCSA1,4,7

Training Model Room-Level Localisation Medication State
Precision F1-Score F1-Score AUROC

ALL-HC

RF 95.00 95.20 56.67 (17.32) 84.55 (12.06)
TENER 94.60 94.80 47.08 (16.35) 67.74 (10.82)
DTML 94.80 94.90 50.33 (13.06) 75.97 (9.12)

Alt DTML 94.80 95.00 47.25 (5.50) 75.63 (4.49)
MDCSA1,4,7 4APS 92.22 92.22 53.47 (12.63) 73.48 (6.18)
MDCSA1,4,7 RSSI 94.70 94.90 51.14 (11.95) 68.33 (18.49)

MDCSA1,4,7 4APS RSSI 93.30 93.10 64.52 (11.44) 81.84 (6.30)
MDCSA1,4,7 94.90 95.10 64.13 (6.05) 80.95 (10.71)

Demographic Features 49.74 (15.60) 65.66 (18.54)

LOO-HC

RF 89.67 (1.85) 88.95 (2.61) 54.74 (11.46) 69.24 (17.77)
TENER 90.35 (1.87) 89.75 (2.24) 51.76 (14.37) 70.80 (9.78)
DTML 90.51 (1.95) 89.82 (2.60) 55.34 (13.67) 73.77 (9.84)

Alt DTML 90.52 (2.17) 89.71 (2.83) 49.56 (17.26) 73.26 (10.65)
MDCSA1,4,7 4APS 88.01 (6.92) 88.08 (5.73) 59.52 (20.62) 74.35 (16.78)
MDCSA1,4,7 RSSI 90.26 (2.43) 89.48 (3.47) 58.84 (23.08) 76.10 (10.84)

MDCSA1,4,7 4APS RSSI 88.55 (6.67) 88.75 (5.50) 42.34 (13.11) 72.58 (6.77)
MDCSA1,4,7 91.39 (2.13) 91.06 (2.62) 55.50 (15.78) 83.98 (13.45)

Demographic Features 51.79 (15.40) 68.33 (18.43)

LOO-PD

RF 86.89 (7.14) 84.71 (7.33) 43.28 (14.02) 62.63 (20.63)
TENER 86.91 (6.76) 86.18 (6.01) 36.04 (9.99) 60.03 (10.52)
DTML 87.13 (6.53) 86.31 (6.32) 43.98 (14.06) 66.93 (11.07)

Alt DTML 87.36 (6.30) 86.44 (6.63) 44.02 (16.89) 69.70 (12.04)
MDCSA1,4,7 4APS 86.44 (6.96) 85.93 (6.05) 47.26 (14.47) 72.62 (11.16)
MDCSA1,4,7 RSSI 87.61 (6.64) 87.21 (5.44) 45.71 (17.85) 67.76 (10.73)

MDCSA1,4,7 4APS RSSI 87.20 (7.17) 87.00 (6.12) 41.33 (17.72) 66.26 (12.11)
MDCSA1,4,7 88.04 (6.94) 87.82 (6.01) 49.99 (13.18) 81.08 (8.46)

Demographic Features 43.89 (14.43) 60.95 (25.16)

4m-HC

RF 74.27 (8.99) 69.87 (7.21) 50.47 (12.63) 59.55 (12.38)
TENER 69.86 (18.68) 60.71 (24.94) N/A N/A
DTML 77.10 (9.89) 70.12 (14.26) 43.89 (11.60) 64.67 (12.88)

Alt DTML 78.79 (3.95) 71.44 (9.82) 47.49 (14.64) 65.16 (12.56)
MDCSA1,4,7 4APS 81.42 (6.95) 78.65 (7.59) 42.87 (17.34) 67.09 (7.42)
MDCSA1,4,7 RSSI 81.69 (6.85) 77.12 (8.46) 49.95 (17.35) 69.71 (11.55)

MDCSA1,4,7 4APS RSSI 82.80 (7.82) 79.37 (8.98) 43.57 (23.87) 65.46 (15.78)
MDCSA1,4,7 83.32 (6.65) 80.24 (6.85) 55.43 (10.48) 78.24 (6.67)

Demographic Features 32.87 (13.81) 53.68 (13.86)

4m-PD

RF 71.00 (9.67) 65.89 (11.96) N/A N/A
TENER 65.30 (23.25) 58.57 (27.19) N/A N/A
DTML 70.35 (14.17) 64.00 (17.88) N/A N/A

Alt DTML 74.43 (9.59) 67.55 (14.50) N/A N/A
MDCSA1,4,7 4APS 81.02 (8.48) 76.85 (10.94) 49.97 (7.80) 69.10 (7.64)
MDCSA1,4,7 RSSI 77.47 (12.54) 73.99 (13.00) 41.79 (16.82) 67.37 (16.86)

MDCSA1,4,7 4APS RSSI 83.01 (6.42) 79.77 (7.05) 41.18 (12.43) 63.16 (11.06)
MDCSA1,4,7 83.30 (6.73) 76.77 (13.19) 48.61 (12.03) 76.39 (12.23)

Demographic Features 36.69 (18.15) 50.53 (15.60)
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Table 2: Hallway prediction on limited training data.

Training Model Precision F1-Score

4m-HC
MDCSA 4APS RSSI 62.32 (19.72) 58.99 (23.87)

MDCSA 4APS 68.07 (23.22) 60.01 (26.24)
MDCSA 71.25 (21.92) 68.95 (17.89)

4m-PD
MDCSA 4APS RSSI 58.59 (23.60) 57.68 (24.27)

MDCSA 4APS 62.36 (18.98) 57.76 (20.07)
MDCSA 70.47 (14.10) 64.64 (21.38)

Table 3: Room-to-room transition accuracy (in seconds) of
all models compared to the ground truth. Standard deviation
is shown in (.), the best performer is bold, while the second
best is italicized. A model that fails to capture a transition
between particular roomswithin a period that has the ground
truth is assigned ‘N/A’ score.

Data Models Kitch-Livin Kitch-Dinin Dinin-Livin

Ground Truth 18.71(18.52) 14.65(6.03) 10.64(11.99)

ALL-HC

RF 16.18(12.08) 14.58(10.22) 10.19(9.46)
TENER 15.58(8.75) 16.30(12.94) 12.01(13.01)

Alt DTML 15.27(7.51) 13.40(6.43) 10.84(10.81)
MDCSA 17.70(16.17) 14.94(9.71) 10.76(9.59)

LOO-HC

RF 17.52(16.97) 11.93(10.08) 9.23(13.69)
TENER 14.62(16.37) 9.58(9.16) 7.21(10.61)

Alt DTML 16.30(17.78) 14.01(8.08) 10.37(12.44)
MDCSA 17.70(17.42) 14.34(9.48) 11.07(13.60)

LOO-PD

RF 14.49(15.28) 11.67(11.68) 8.65(13.06)
TENER 13.42(14.88) 10.87(10.37) 6.95(10.28)

Alt DTML 16.98(15.15) 15.26(8.85) 9.99(13.03)
MDCSA 16.42(14.04) 14.48(9.81) 10.77(14.18)

4m-HC

RF 14.22(18.03) 11.38(15.46) 13.43(18.87)
TENER 10.75(15.67) 8.59(14.39) N/A

Alt DTML 16.89(18.07) 14.68(13.57) 9.31(15.70)
MDCSA 18.15(19.12) 15.32(14.93) 11.89(17.55)

4m-PD

RF 11.52(16.07) 8.73(12.90) N/A
TENER 8.75(14.89) N/A N/A

Alt DTML 14.75(13.79) 13.47(17.66) N/A
MDCSA 17.96(19.17) 14.74(10.83) 10.16(14.03)

(see Section 3), and 2) the normalised in-home gait speed features.
The metric we use for ON / OFF medication state evaluation is the
weighted F1-Score and AUROC which are averaged and standard
deviated across the test folds.

5.1 Experimental Results
Room-level Accuracy. The first part of Table 1 compares the per-
formance of MCDSA network and other approaches for room-level
classification. For the room-level classification, MDCSA network
outperforms other networks and RF with a minimum improve-
ment of 1.3% for the F1-score over the second-best network (i.e.

Alt DTML) in each cross-validation type with the exception of the
ALL-HC validation. The improvement is more significant on the
4m-HC and 4m-PD validations, when the training data are limited,
with an average improvement at almost 9% for the F1-score over
the Alt DTML.

The LOO-HC and LOO-PD validation show that a model that has
the ability to capture the temporal dynamics across time steps (e.g.
TENER and DTML) will perform better than a standard baseline
technique such as a Random Forest. TENER and DTML perform
better in those two validations due to their ability to capture asyn-
chronous relation across modalities. However, when the training
data becomes limited as in 4m-HC and 4m-PD validations, having
extra capabilities is necessary to further extract temporal informa-
tion and correlations. Due to being a vanilla transformer requiring
considerable amount of training data, TENER performs worst in
these two validations. DTML performs quite well due to its ability
to capture local context via LSTM for each modality. However, in
general, DTML’s performance suffers in both the LOO-PD and 4m-
PD validations as the accelerometer data (and modality) may be
erratic due to PD and should be excluded at times from contribut-
ing to room classification. MDCSA network has all the capabilities
that DTML has with an improvement in suppressing accelerometer
modality when needed via GRN layer embedded in DCSA. Suppress-
ing the noisymodality seems to have a strong impact in maintaining
the performance of the network when the training data is limited.
This is validated by how Alt DTML (i.e. DTML added with GRN and
CRF layers) outperforms the standard DTML by an average of 2.2%
for the F1-score in in 4m-HC and 4m-PD validations. It is further
confirmed by MDCSA1,4,7 4APS against MDCSA1,4,7 4APS RSSI
with the latter model, which does not include the accelerometer
data, outperforming the former for the F1-score by an average of
1.6% in the last three cross validations. It is worth pointing out
that the MDCSA1,4,7 4APS RSSI model performed the best in the
4m-PD validation. However, the omission of accelerometer data
affects the model in differentiating rooms that are more likely to
have active movement (i.e. hall) than the rooms that are not (i.e.
living room). It can be seen from Table 2 that the MDCSA1,4,7 4APS
RSSI model has low performance in predicting hallway compared
to the full model of MDCSA1,4,7. As a consequence, the MDCSA1,4,7
4APS RSSI model cannot produce in-home gait speed features as
competent as the ones produced by the MDCSA1,4,7.

Room-to-room Transition and Medication Accuracy.We
hypothesise that during their OFF medication state, the deteriora-
tion in mobility of a person with PD is exhibited by how they tran-
sition between rooms. To test this hypothesis, a Wilcoxon signed
rank test was used on the annotated data from PD participants
undertaking each of the three individual transitions between rooms
whilst ON (taking) and OFF (withholding) medications to assess
whether the mean transition duration ON medications was statisti-
cally significantly shorter than the mean transition duration for the
same transition OFF medications for all transitions studied (see Ta-
ble 4). From this result, we argue that the mean transition duration
obtained by each model from Table 1 that is close to the ground
truth can capture what the ground truth captures. As mentioned in
Section 3, this transition duration for each model is generated by
the model continuously performing room-level localisation focus-
ing on the time a person is predicted to spend in a hallway between
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Table 4: PD participant room transition duration with ON and OFF medications comparison using Wilcoxon signed rank tests.

OFF transitions Mean transition duration ON transitions Mean transition duration W z p

Kitchen-Living OFF 17.2 sec Kitchen-Living ON 14.0 sec 75.0 2.824 0.001

Dining-Kitchen OFF 12.9 sec Dining-Kitchen ON 9.2 sec 76.0 2.903 < .001

Dining-Living OFF 10.4 sec Dining-Living ON 9.0 sec 64.0 1.961 0.026

rooms. We show, in Table 3, that the mean transition duration for
all transitions studied produced by MDCSA1,4,7 model is the closest
to the ground truth improving over the second best by around 1.25
seconds across all hall transitions and validations.

The second part of the Table 1 shows the performance of all
our networks for medication state classification. The demographic
features can be used as a baseline for each type of validation. The
MDCSA network, with the exception of the ALL-HC validation, out-
performs any other network by a significant margin for the AUROC
score. By using in-home gait speed features produced by MDCSA
network, a minimum of 15% improvement over the baseline demo-
graphic features can be obtained with the biggest gained obtained
in the 4m-PD validation data. In 4m-PD validation data, RF, TENER,
and DTML could not manage to provide any prediction due to their
inability to capture (partly) hall transitions. Furthermore, TENER
has shown its inability to provide any medication state prediction
from the 4m-HC data validations. It can be validated by Table 3
when the TENER failed to capture any transitions between dining
room and living room across all periods that have ground truths.
MDCSA networks are able to provide medication state prediction
and maintain its performance across all cross-validations thanks to
the addition of Eq. 13 in the loss function.

6 CONCLUSION
We have presented the MDCSA model, a new deep learning ap-
proach for indoor localisation utilising RSSI and wrist-worn ac-
celerometer data. The evaluation on our unique real-world free-
living pilot dataset, which includes subjects with and without PD,
shows that MDCSA achieves the state-of-the-art accuracy for in-
door localisation. The availability of accelerometer data does indeed
enrich the RSSI features which, in turn, improves the accuracy of
the indoor localisation.

In naturalistic settings, in-homemobility can bemeasured through
the use of indoor localisation models. We have shown, using room
transition duration results, that our PD cohort take longer on aver-
age to perform a room transition when they withhold medications.
With accurate in-home gait speed features, a classifier model can
then differentiate accurately if a person with PD is in an ON or
OFF medication state. Such changes show the promise of these lo-
calisation outputs to detect the dopamine-related gait fluctuations
in PD that impact on patients’ quality of life [31] and are impor-
tant in clinical decision making [9]. We have also demonstrated
that our indoor localisation system provides precise in-home gait
speed features in PD with a minimal average offset to the ground
truth. The network also outperforms other models in the produc-
tion of in-home gait speed features which is used to differentiate
the medication state of a person with PD.

Limitations and future research. One limitation of this study
is the relatively small sample size (which was planned as this is
an exploratory pilot study). We believe our sample size is ample to
show proof of concept. This is also the first such work with unobtru-
sive ground truth validation from embedded cameras. Future work
should validate our approach further on a large cohort of people
with PD and consider stratifying for sub-groups within PD (e.g.
akinetic-rigid or tremor-dominant phenotypes), which would also
increase the generalisability of the results to the wider population.
Future work in this matter could also include the construction of a
semi-synthetic dataset based on collected data to facilitate a parallel
and large-scale evaluation.

This smart home’s layout and parameters remain constant for
all the participants, and we acknowledge that transfer of this deep
learning model to other varied home settings may introduce varia-
tions in localisation accuracy. For future ecological validation and
based on our current results, we anticipate the need for pre-training
(e.g. a brief walkaround which is labelled) for each home, and also
suggest that some small amount of ground-truth data will need
to be collected (e.g. researcher prompting of study participants to
undertake scripted activities such as moving from room to room)
to fully validate the performance of our approach in other settings.

Accurate room localisation using these datamodalities has awide
range of potential applications within healthcare. This could in-
clude tracking of gait speed during rehabilitation from orthopaedic
surgery, monitoring wandering behaviour in dementia or triggering
an alert for a possible fall (and long lie on the floor) if someone is
in one room for an unusual length of time. Furthermore, accurate
room use and room-to-room transfer statistics could be used in
occupational settings, e.g. to check factory worker location.
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A STATISTICAL SIGNIFICANCE TEST
It could be argued that all the localisation models compared in Ta-
ble 1 might not be statistically different due to fairly high standard
deviation across all types of cross-validations which is caused by rel-
atively small number of participants. In order to compare multiple
models over cross-validation sets and show statistical significance
of our proposed model, we perform the Friedman test to first reject
the null hypothesis [10]. We then performed a pairwise statistical
comparison: the Wilcoxon signed-rank test with Holm’s alpha cor-
rection (𝛼 = 5%). Finally, we used a critical difference diagram [6]
to visualize the results of these statistical tests projected onto the
average rank axis, with a thick horizontal line showing a clique of
localisation mdoels that are not significantly different (see Figure 3
and 4).
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Figure 3: Critical difference diagram for the precision of
room-level localisation showing the pairwise statistical com-
parison of all localisation models across different cross-
validation techniques.
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Figure 4: Critical difference diagram for the F1-score of room-
level localisation showing the pairwise statistical comparison
of all localisation models across different cross-validation
techniques.
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