12 research outputs found

    Wetzeliella and its allies - the "hole story": a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae

    Get PDF
    Fossil dinoflagellate cysts of the Paleogene peridiniacean subfamily Wetzelielloideae have a stable tabulation pattern similar to that of other fossil peridiniaceans, but distinguished by a foursided (quadra) rather than a six-sided (hexa) 2a plate. Aside from tabulation, wetzelielloideans show great morphological variability, especially in ornamentation and horn development, but also in wall structure. This diversity has distracted attention from the morphological variation of the archeopyle, which, although always formed through loss of the 2a plate only, shows variations that we consider critical in unravelling the group's phylogeny. Important factors are the shape and relative dimensions of the archeopyle and whether the operculum is attached (adnate) or detached. These parameters allow us to define five archeopyle types: equiepeliform, hyperepeliform, hypersoleiform, latiepeliform and soleiform. Based primarily on archeopyle type and secondarily on wall and morphology and ornamentation, we recognise six genera with an equiepeliform archeopyle, four with a hyperepeliform archeopyle, five with a latiepeliform archeopyle, five with a soleiform archeopyle, and one with a hypersoleiform archeopyle. The earliest-known wetzelielloideans, which occur around the Paleocene‒Eocene boundary, have an equiepeliform archeopyle. Other archeopyle types evolved rapidly: taxa with hyperepeliform, latiepeliform and hypersoleiform types are known from the Ypresian. Latiepeliform and hyperepeliform types are restricted to the Ypresian and Lutetian. Forms with the soleiform archeopyle appeared in the late Lutetian, but were rare until the Bartonian, when they became the dominant type, and they were the only type in Priabonian and younger strata. Wetzelielloideans became extinct in the middle Oligocene. We make numerous taxonomic proposals, including the following new genera: Castellodinium, Dolichodinium, Epelidinium, Kledodinium, Michouxdinium, Petalodinium, Piladinium, Rhadinodinium, Sagenodinium, Sophismatia, Stenodinium, Stichodinium and Vallodinium. We emend the diagnoses of Charlesdowniea, Dracodinium and Wilsonidium, and erect the species Kledodinium filosum, Petalodinium sheppeyense and Sagenodinium franciscanum.Fil: Williams, Graham L.. Natural Resources Canada. Geological Survey of Canada (Atlantic); CanadáFil: Damassa, Sarah P..Fil: Fensome, Robert A.. Natural Resources Canada. Geological Survey of Canada (Atlantic); CanadáFil: Guerstein, Gladys Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Geológico del Sur; Argentina. Universidad Nacional del Sur; Argentin

    Integrated stratigraphy and palaeoenvironment of the P/E boundary interval, Rakhi Nala section, Indus Basin (Pakistan)

    No full text
    Marine sedimentary section across the Paleocene/Eocene (P/E) boundary interval is preserved in the Dungan Formation (Lower Indus Basin), Pakistan. Four dinoflagellate zones in the P/E interval of the Rakhi Nala section (Lower Indus Basin) are identified and correlated. The quantitative analysis of the dinoflagellate cyst assemblages together with geochemical data are used to reconstruct the palaeoenvironment across the P/E interval. The dinocyst assemblages allow the local correlation of the Dungan Formation (part) of the Sulaiman Range with the Patala Formation (part) of the Upper Indus Basin and global correlation of the Zone Pak-DV with the Apectodinium acme Zone of the Northern and Southern hemispheres. The onset of the carbon isotopic excursion (CIE) associated with Paleocene Eocene Thermal Maximum (PETM) is used globally to identify the P/E boundary. The CIE for the total organic carbon (fine fraction) δ13CFF is of a magnitude of −1.7‰ is recorded for the first time in the Indus Basin. The Apectodinium acme precedes and straddles the onset of the CIE in the Indus Basin. This Apectodinium acme is also accompanied by a planktonic and benthonic foraminifera “barren zone.” The CIE in the Indus Basin, coupled with the changes in the dinocyst distribution and the benthonic and planktonic foraminifera assemblages, provides evidence of the changes associated with the PETM in this little-known part of the world. The benthonic foraminiferal assemblage indicates bathyal environment of deposition at the time of P/E boundary interval; the presence of dominantly open marine dinoflagellates and high planktonic foraminiferal ratio suggest that the water column at this site was well connected with the rest of the Tethys
    corecore