56 research outputs found

    Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle

    Get PDF
    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease

    A practical guide for the study of human and murine sebaceous glands in situ

    Get PDF
    The skin of most mammals is characterised by the presence of sebaceous glands (SGs), whose predominant constituent cell population is sebocytes, that is, lipid-producing epithelial cells, which develop from the hair follicle. Besides holocrine sebum production (which contributes 90% of skin surface lipids), multiple additional SG functions have emerged. These range from antimicrobial peptide production and immunomodulation, via lipid and hormone synthesis/metabolism, to the provision of an epithelial progenitor cell reservoir. Therefore, in addition to its involvement in common skin diseases (e.g. acne vulgaris), the unfolding diversity of SG functions, both in skin health and disease, has raised interest in this integral component of the pilosebaceous unit. This practical guide provides an introduction to SG biology and to relevant SG histochemical and immunohistochemical techniques, with emphasis placed on in situ evaluation methods that can be easily employed. We propose a range of simple, established markers, which are particularly instructive when addressing specific SG research questions in the two most commonly investigated species in SG research, humans and mice. To facilitate the development of reproducible analysis techniques for the in situ evaluation of SGs, this methods review concludes by suggesting quantitative (immuno-)histomorphometric methods for standardised SG evaluation

    The Effects of Pregnenolone 16α-Carbonitrile Dosing on Digoxin Pharmacokinetics and Intestinal Absorption in the Rat

    Get PDF
    The effect of Pgp induction in rats by pregnenolone 16α-carbonitrile (PCN) (3 days, 35 mg/kg/d, p.o.) on digoxin pharmacokinetics and intestinal transport has been assessed. After intravenous or oral digoxin dosing the arterial and hepatic portal vein (oral) AUC(0-24h) were significantly reduced by PCN pre-treatment. Biliary digoxin clearance increased 2-fold following PCN treatment. PCN significantly increased net digoxin secretion (2.05- and 4.5-fold respectively) in ileum and colon but not in duodenum or jejunum. This increased secretion correlated with increased Pgp protein expression in ileum and colon. Both intestinal and biliary excretion therefore contribute to altered digoxin disposition following PCN

    Author Correction: Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2020-05-06, pub-electronic 2020-05-20, online 2020-05-20, collection 2020-12Publication status: PublishedAn amendment to this paper has been published and can be accessed via a link at the top of the paper

    Cholesterol homeostasis in hair follicle keratinocytes is disrupted by impaired ABCA5 activity

    Get PDF
    The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour. Primary keratinocytes isolated from the outer root sheath of plucked human hair follicles were utilised as a relevant cell model. Following exogenous cholesterol loading, an increase in ABCA5 co-localisation to intracellular organelles was seen. Knockdown of ABCA5 revealed a dysregulation in cholesterol homeostasis, with LXR agonism leading to partial restoration of the homeostatic response. Filipin staining and live BODIPY cholesterol immunofluorescence microscopy revealed a reduction in endo-lysosomal cholesterol following ABCA5 knockdown. Analysis of oxysterols showed a significant increase in the fold change of 25-hydroxycholesterol and 7-β-hydroxycholesterol following cholesterol loading in ORS keratinocytes, after ABCA5 knockdown. These data suggest a role for ABCA5 in the intracellular compartmentalisation of free cholesterol in primary hair follicle keratinocytes. The loss of normal homeostatic response, following the delivery of excess cholesterol after ABCA5 knockdown, suggests an impact on LXR-mediated transcriptional activity. The loss of ABCA5 in the hair follicle could lead to impaired endo-lysosomal cholesterol transport, impacting pathways known to influence hair growth. This avenue warrants further investigation. [Abstract copyright: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.

    Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition

    Get PDF
    The in situ control of redox insult in human organs is of major clinical relevance, yet remains incompletely understood. Activation of Nrf2, the “master regulator” of genes controlling cellular redox homeostasis, is advocated as a therapeutic strategy for diseases with severely impaired redox balance. It remains to be shown whether this strategy is effective in human organs, rather than isolated human cell types. We have therefore explored the role of Nrf2 in a uniquely accessible human (mini-) organ, human scalp hair follicles (HFs). Microarray and qPCR analysis of human HFs following Nrf2 activation using sulforaphane identified the modulation of phase II metabolism, ROS clearance, the pentose phosphate pathway and glutathione homeostasis. Nrf2 knockdown (siRNA) in cultured human HFs confirmed the regulation of key Nrf2 target genes (i.e. HO-1, NQO1, GSR, GCLC, ABCC1, PRDX1). Importantly, Nrf2 activation significantly reduced ROS levels and associated lipid peroxidation. Nrf2 pre-activation reduced oxidative stress-stimulated (H2O2 or menadione) premature catagen and hair growth inhibition, significantly ameliorated the H2O2-dependent increase in matrix keratinocyte apoptosis and reversed the ROS-induced reduction in proliferation. This study thus provides direct evidence for the crucial role of Nrf2 in protecting human organ function (i.e. scalp HFs) against redox insult

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis

    Get PDF
    Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington’s disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development
    corecore