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Abstract

The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock

genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmenta-

tion. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured

human HFs. In addition they are recognized as key regulators of the central clock that con-

trols circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences pe-

ripheral clock activity in the human HF. Over 24 hours we found a significant reduction in

protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly.

Furthermore, while all clock genes maintained their rhythmicity in both the control and T4

treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4

(100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was

also assessed appearing to show an induced circadian rhythmicity by T4 however, this was

not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels

of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treat-

ed HFs. BMAL1 and PER1mRNA was also up-regulated in the HF bulge, the location of HF

epithelial stem cells. Together this provides the first direct evidence that T4 modulates the

expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may

also show a disordered peripheral clock, which raises the possibility that short term, pulsa-

tile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as

a target to treat clock-related disease.

Introduction

There is an increasing appreciation for the role of the biological clock and its molecular compo-

nents in maintaining tissue homeostasis [1–5]. It is now understood that most peripheral tis-

sues exhibit functional, oscillating molecular clock activity which is synchronised by a central

master regulator, the suprachiasmatic nucleus (SCN) of the hypothalamus [6–8]. When
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normal molecular clock activity is altered, e.g. during nightshift work, psycho-emotional stress

or through poor diet, normal tissue homeostasis is disrupted triggering or aggravating disease,

including metabolic syndrome, Alzheimer’s disease, hypertension, diabetes, and cancer [9–14].

Moreover, clock knock-out mice have an increased number of age-related pathologies, includ-

ing reduced bone density and life span [15–17]. Finally, it is well-established that the pharma-

cological effects of drug administration on peripheral tissue functions is greatly dependent on

the circadian timing of drug administration [18–20]. Therefore a greater understanding of mo-

lecular clock regulation may pave the way for the development of novel therapies aimed at cor-

recting clock dysfunction and maintaining normal tissue function.

Due to the complexity of circadian biology, research has primarily utilised in vitro cell cul-

ture models [21–23], which cannot capture the complex interactions between difference cell

types found within tissues, or animal models [1,5,24–26]. Moreover, it is insufficiently under-

stood how intrinsic oscillatory behaviours found in peripheral human tissues, separate from

the SCN, are regulated. Thus, it remains a major challenge for translational chronobiological

research to identify clinically relevant, SCN-independent regulators of the human peripheral

clock.

The human hair follicle (HF) is an ideal model system for biological research in areas ranging

frommolecular biology and stem cell biology to systems biology and chronobiology [26–28].

The HF is a skin appendage which undergoes life-long cyclic transformations from an active

growth phase (anagen) to a destructive phase (catagen) and a phase of relative quiescence (telo-

gen) [29,30]. The molecular clock is now appreciated in hair cycle control both in mice, where

clock activity is highly compartmentalised in anagen HFs [5], with mice lacking the core clock

protein Bmal1 having a delayed onset of anagen [25], and humans, where clock genes/proteins

expression has been shown in both human skin and plucked human hair shafts [31].

Yet, a functional role for the peripheral molecular clock in human HF physiology has only

recently been identified: ex vivo, human HFs not only maintain circadian rhythmicity of core

clock gene (CLOCK, BMAL1 and PER1) transcription in organ culture, but PER1 protein ex-

pression is also highly hair cycle dependent, increasing as HFs enter catagen [26]. Functionally,

knockdown of PER1 or BMAL1 prolongs HF anagen, implicating PER1, BMAL1 and clock tar-

get genes in the regulation of anagen-catagen switching during the human HF cycle [26]. In ad-

dition to this, knock-down of either PER1 or BMAL1 stimulated human HF pigmentation in a

hair cycle-independent manner suggesting the human HF has an intrinsic molecular clock

which is indispensable for normal HF activity [32]. For this reason, human HF organ culture is

a tractable and clinically relevant research model for understanding how the peripheral clock

is regulated.

In the current study, we have examined the role of the thyroid hormone (TH), thyroxine

(T4), a frequently administered hormones in clinical medicine, as a regulator of the peripheral

clock [33]. THs were selected as, on the one hand, HFs are known to be modulated by THs via

signalling through the TH receptor beta [34–36], which prolongs anagen, increases pigmenta-

tion, stimulates matrix proliferation and inhibits apoptosis in the human HF. Furthermore, T4

up-regulates the stem cell marker keratin 15 in situ after short-term application [34,35], in-

creases mitochondrial activity and biogenesis and transcription of the clock gene, BMAL1 [37],

mimicking some of the some of the effects of clock knock-down in human HFs [26].

On the other hand, THs are known to influence the central clock [11,38,39]. For example,

the thyroid gland influences clock circadian oscillations [24] and is essential for seasonal

rhythms and mating season timing in mammals and shows diurnal expression patterns

[40,41]. Moreover, thyroidectomy alters circadian activity and blunts daily oscillations of PER2

[42] and T4 has been implicated in regulating metabolism [40], a process regulated by the
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molecular clock [43–45]. However, direct evidence that T4 modulates the peripheral clock in

human tissues in situ is still missing.

Thus, T4 is a potential clinically relevant candidate for regulating peripheral clock activity,

namely in the human HF. As human HF organ culture is an ideally suited, easily accessible

model system, in addition to having robust and functional peripheral clock activity [26], we

will investigate whether T4 modulates peripheral clock activity in the human system in this

physiologically and clinically relevant human mini-organ.

Results

Thyroxine is a gender-independent modulator of human HF cycling

First, we asked whether the previously reported anagen-prolonging effect of T4 on micro-dis-

sected, organ-cultured human scalp HFs is robust and gender-independent, [34] using occipital

scalp HFs from male patients instead of female fronto-temporal HFs used in the van Beek et al.

(2008) study. This showed that T4 administration over 6 days resulted in a significantly higher

percentage of HFs in anagen (38% [51/129]) compared to the vehicle control (24% [33/133])

(p = 0.0077) (S1A Fig). Conversely, in the control group a higher percentage of HFs tended to

be in early catagen (48% [64/33]) compared to treated HFs (29% [39/129]) (p = 0.0031) (S1A

Fig). This demonstrates that T4 is a potent, gender-independent modulator of human HF cy-

cling in vitro, thus confirming T4 as a robust modulator of human HF cycling.

Intrafollicular clock gene and protein expression is significantly reduced
by thyroxine treatment

Next, we investigated whether T4 treatment impacts on intrafollicular clock gene expression.

Quantitative-RT-PCR of HFs treated with T4 for 24 hours demonstrated that there was a sig-

nificant reduction in gene mRNA steady-state levels for the core clock genes [10,46], i.e.

CLOCK, BMAL1 and PER1 (p< 0.001) (Fig 1A). To compliment this we evaluated whether the

protein levels were similarly reduced. This was assessed at five time points (0, 6, 12, 18 and 24

hours) to eliminate any effects caused by a shift in circadian rhythmicity. Immunohistomor-

phometry demonstrated that at 6, 12, 18 and 24 hours there was a significant reduction in

PER1 protein levels (p< 0.011), with BMAL1 showing significant reductions at 6, 12, 18

(p<0.016) when compared to vehicle controls (Fig 1B–1E). Together these data show that

intrafollicular clock gene and protein expression in human anagen scalp HFs is significantly re-

duced by T4 treatment.

Thyroxine dampens clock gene cycling amplitude

To investigate whether the decrease in clock gene/protein expression was due to a loss of HF

synchronisation and/or circadian rhythmicity, HF clock gene expression was assessed every 6

hours for 48 hours and the rhythmicity and amplitude was assessed using the JTK cycle algo-

rithm (University of Missouri-St. Louis, MO, USA version 2.1) [47]. (Fig 2A–2C) These time

course experiments demonstrated that over 48 hours HFs showed, both qualitatively and quan-

titatively, rhythmic expression of BMAL1, CLOCK and PER1 in both control and T4 treated

HFs (Fig 2E) [47]. However, while rhythmicity was maintained it was decreased by T4. To

check for statistical significance JTK cycle was again utilised and the estimated amplitude mea-

surement used to compare control and treated HFs (Fig 2F) [48]. Both BMAL1 (p = 0.029) and

PER1 (p = 0.028) showed a significant decrease in amplitude when treated with T4 (Fig 2F).

These data imply that whilst circadian rhythmicity was maintained, the clock gene transcript

Thyroxine Modulates the Peripheral Clock

PLOS ONE | DOI:10.1371/journal.pone.0121878 March 30, 2015 3 / 15



levels were lower, suggesting that T4 and may prolong anagen by reducing the overall ampli-

tude of clock gene, specifically BMAL1 and PER1 expression in human HFs in situ.

Thyroxine modulation of peripheral clock activity is via cyclin D1?

In order to probe potential mechanisms for how T4 modulation of clock activity impacts on

HF biology, we next investigated the effects of T4 stimulation on cyclin D1, a key cell cycle-reg-

ulatory gene that is well-recognized and as a regulator of human hair matrix keratinocyte pro-

liferation [49,50]. (Fig 2D and 2E) We did not observe a 24 hour rhythm in cyclin D1 in

control HF expression however it did appear to oscillate over the time course assessed. This

may be due to its expression changing through the cell-cycle. (Fig 2D and 2E).

Fig 1. BMAL1 and PER1 protein and transcript levels are reduced by thyroxine treatment. HFs treated with T4 for 24 hours were stained for either
BMAL1 or PER1 and transcript levels were assessed. (a) qRT-PCR demonstrated that CLOCK, BMAL1 and PER1, were significantly down regulated by T4
expression (24 hours). Protein expression was also assessed and quantified using immunohistomorphometry. (b,d) PER1 protein was significantly
decreased by T4 at 6, 12,18 and 24 hours. BMAL1 protein levels were also decreased significantly by T4 at time points 6,12 and 18 hours showing a
tendency to decrease at 0 and 24 hours. (mean (SD) * p< 0.05, *** p< 0.001, Student’s Ttest mean, results were pooled frommultiple HFs from 3
patients). (scale bar = 50μm)

doi:10.1371/journal.pone.0121878.g001

Thyroxine Modulates the Peripheral Clock

PLOS ONE | DOI:10.1371/journal.pone.0121878 March 30, 2015 4 / 15



Long-term T4 treatment up-regulates clock gene mRNA and PER1
protein levels

To assess how long-term administration of T4 affects intrafollicular clock activity, transcript

and protein levels of core clock genes BMAL1 and PER1 was assessed after 6 days. This showed

that, in contrast to HFs cultured for 6 and 24 hours, transcript levels of core clock genes

(CLOCK [p = 0.030], PER1 [p = 0.029], BMAL1 [p = 0.013], CRY1 [p = 0.010] and CRY2

[p = 0.014]) were significantly up-regulated by T4, as assessed by qRT-PCR (Fig 3A).

Next, to evaluate whether this regulation occurred only at the level of transcription or trans-

lated also onto the protein level, human HF sections were immunostained for BMAL1 and

PER1 after 6 days of HF organ culture in the presence of T4. Quantitative immunohistomor-

phometry showed that there was a significant increase in PER1 protein expression in the

human HF (Fig 3B and 3C) after 6 day treatment with T4 (p = 0.017). In contrast, BMAL1

protein expression did not change in T4 treated HFs (Fig 3B and 3D). These findings suggest

that selected intrafollicularly expressed clock genes are up-regulated by long-term T4 treatment

on both the transcript and protein level.

Fig 2. Thyroxine dampens clock gene expression over 48 hours. To assess the influence of T4 of on the circadian expression ofCLOCK, BMAL1, PER1
andCyclin D1, HFs were synchronised, treated with T4 and sampled every 6 hours for 48 hours. (a, b, c & e) Quantitative-RT-PCR of clock transcripts
showed that whilst both control and T4 treated HFs had rhythmic clock gene expression, which was supported by the confidence p values produced by the
JTK cycle algorithm (e); it was reduced by T4 treatment. This was quantified by comparing the estimated amplitude measurement which demonstrated that
the reduction in amplitude by T4 was significant for BMAL1 and PER1 (f). (d) Key cell cycle progression marker Cyclin D1 did not show a circadian expression
pattern in the control group however, this appeared to be induced qualitatively by T4. (e) However this was not significant. (Mann-Whitney, * p< 0.05, mean
(SD), HFs were pooled data from 4 donors).

doi:10.1371/journal.pone.0121878.g002
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Fig 3. Clock transcript levels and PER1 protein levels are increased after 6 days treatment with T4. The effects of T4 on clock gene and protein
expression were assessed on HFs treated for 6 days by immunofluorescence and qRT-PCR. (a) All core clock genes were significantly up-regulated at 6
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PER1 and BMAL1 transcript levels are increased in bulge stem cells

This observation raised the question; whether epithelial HF stem cells express clock genes in situ

and whether any such expression is regulated by T4. Therefore, we asked whether the bulge re-

gion of human HFs expresses clock genes and whether this expression is regulated by T4.

First, it was necessary to establish whether K15+ epithelial progenitor cells in the bulge/isth-

mus region of the HF epithelium cells express clock genes in situ. Using a dual stain for either

PER1 and BMAL1 we were able to show that the stem cells do express both BMAL1 and PER1

(Fig 4A).

days by T4 treatment. The Protein expression of PER1 was also up-regulated after 6 days (b & c) however, BMAL1 expression remained unchanged (b & D).
(Mann-Whitney, * p< 0.05, mean (SD), HFs were pooled data from 3 patients). (scale bar = 50μm)

doi:10.1371/journal.pone.0121878.g003

Fig 4. K15+ stem cells express BMAL1 and PER1 protein. (a) After establishing that K15 positive cells express BMAL1 and PER1 the role T4 on clock
gene expression in the k15+ bulge stem cells was assessed by qRT-PCR and quantitative immunohistomorphometry. Transcript levels of BMAL1 and PER1
were upregulated after 6 days (b), (c-e) however, whilst PER1 showed a tendency to increase, neither BMAL1 or PER1 protein levels increased significantly.
(scale bar = 50 μm, HFs were pooled from three donors, p< 0.05 *, ** p< 0.01, mean (SD)).

doi:10.1371/journal.pone.0121878.g004
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To analyse this, following culture with T4, human anagen VI HFs were first bisected and the

upper (distal) part of the HF epithelium (well above the bulb), which contained all the bulge-

associated HF stem cells, was analysed by qRT-PCR. This demonstrated that not only did the

bulge stem cells express clock genes, but also that their expression was significantly increased

following 6 day treatment with T4 (BMAL1 (p = 0.001) PER1 (p = 0.04) (Fig 4B). However,

quantitative immunohistomorphometry of PER1 and BMAL1 protein demonstrated that T4

did not significantly change BMAL1 protein levels in K15+ cells in situ (Fig 4D and 4E). This

may suggest that T4 regulates clock gene expression in human epithelial progenitor cells pri-

marily at the level of transcription.

Discussion

Here we present the first evidence that T4 is a modulator of peripheral clock activity in a model

human (mini-)organ in the absence of central clock inputs. We show that T4 differentially

modulates clock gene activity, with short-term stimulation significantly reducing intrafollicular

transcript and protein levels of core clock members BMAL1 and PER1, while circadian rhyth-

micity of intrafollicular gene expression is maintained. In contrast, long-term T4 stimulation

up-regulates transcript and/or protein levels of all core clock genes (BMAL1, PER1, CLOCK,

CRY1, and CRY2). The effect of T4 on intrafollicular clock activity is likely to have a functional

impact on HF biology, since qualitatively it appears to induce circadian rhythmicity of intrafol-

licular cyclin D1 expression (non-significant) and BMAL1 and PER1 are expressed in the

bulge, the niche for HF epithelial stem cells.

That T4 reduces the gene and protein levels of BMAL1 and PER1 irrespective of the time of

day, two core clock genes whose knock-down promotes hair growth, prolongs anagen and in-

duces pigmentation [26,32] raises the possibility that the anagen-prolonging and pigmentation

stimulatory effects of T4 in human scalp HFs [34] are, at least in part, mediated by reducing

the intrafollicular activity of these clock genes mimicking the effects of clock knock-down.

However, this hypothesis could not be definitively tested as it is not yet possible to selectively

up-regulate BMAL1 and/or PER1 expression and activity in a human organ (e.g. by engineered

overexpression).

This study documents that peripheral clock activity is hormonally regulated in the human

HF. However, in order to convincingly support this claim we needed to demonstrate that any

differences observed were not simply caused by normal diurnal changes in clock gene expres-

sion patterns. Therefore, intrafollicular clock activity was synchronised by dexamethasone

treatment [51] and analysed using an algorithm designed to detect circadian expression pat-

terns, JTK cycle [47]. This allowed us to conclusively demonstrate that the observed changes in

HF clock gene and protein expression were genuinely caused by T4, rather than by constitutive

circadian oscillations.

The regulation of the peripheral clock by T4 reported here is not surprising as T4 has long

been associated with regulation of the molecular clock. For example, the thyroid gland influ-

ences clock circadian oscillations [24], and triiodothyronine (T3), which is intracellularly meta-

bolised from T4 and is considered to represent the main biologically active TH [41]; is needed

for development of the central circadian clock [52]. Moreover, thyroidectomy dampens PER2

oscillatory activity in rats [42], while T4 shows distinct diurnal expression patterns, along with

thyrotropin and triiodothyronine (T3) [53], and is essential for seasonal rhythms and mating

season timing [40,41]. Despite this, our data is the first to demonstrate the direct role of T4 in

modulating peripheral clock activity in human tissues in situ.

As cyclin D1 is a key player in cell-cycle progression, namely during the G2/M transition

[54] and since the circadian clock is tightly coupled to cell-cycle progression [5,55,56] the effect
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of T4 treatment on cyclin D1 was investigated [35]. Although there was no significant differ-

ence in the average amplitude of expression, in the time course experiment, T4 treated HFs ap-

peared to induce circadian rhythmicity in cyclin D1 expression. That T4 could be able to

induce rhythmic expression of cyclin D1 suggests that the anagen-prolonging effect of T4 may

be mediated by maintaining robust circadian expression of cyclin D1 over time. Although this

was not statistically shown to be circadian, qualitative assessment suggests the expression may

be circadian. There are a variety of explanations for the lack of significance, namely that the HF

is made up of many different cell types which may each be influenced differently by T4 adding

additional variation not only between patients but within the HF itself. This is supported by re-

cent work that suggest the HF may have multiple clocks [26,32]. Secondly, that time points

were taken every 6 hours. By reducing the sampling time, for example to 2 hours, would im-

prove the data set and may show a significant results. However, due to the number of HFs re-

quired per time point it is difficult to do this experimentally. It would be desirable to sample

more often and extend the time course beyond 48 hours conclusively determine whether cyclin

D1 shows a circadian expression pattern when stimulated by T4.

If proven this observation would make biological sense as PER can inhibit cyclin D1 and

therefore cell cycle progression [45,57]. The demonstrated reduction of PER by T4 may remove

the regulatory effect of PER1 allowing the cell-cycle to occur quicker, leading to increased pro-

liferation and therefore anagen prolongation observed. As a reduction in Bmal1 increases pro-

liferation and cyclin D1 expression in both murine cells and tumours, as well as decreasing

apoptosis [58]. Furthermore, a reduction of BMAL1 and PER1 in humans is also associated

with an increase in cyclin D1 expression and cell progression further supports this [50]. Previ-

ous work has suggested that cyclin D1 may also mediate the transition from bulge stem cells to

their more differentiated, rapidly proliferating progeny (transient amplifying cells) in the

suprabasal ORS of human HFs [49]. It should be noted that in the time course experiments

there is often a shift in cycling peaking at different times of day, this is to be expected as thyroid

hormones have been shown to be able to lengthen circadian periodicity [24].

As long-term T4 treatment prolongs anagen [34] (S1 Fig) while high levels of clock proteins

promote catagen [26], we asked whether the reduction in clock gene and protein levels was

maintained by long-term T4 stimulation. Contrary to expectations, this was not observed,

since transcript levels of all the core clock genes investigated were significantly up-regulated.

However, this effect only translated to the level of protein expression for PER1. This suggests

that the activity of the molecular clock as a system needs to be up-regulated in order to induce

catagen, while up-regulation of just one of its protein components is insufficient. Alternatively,

the increase in clock transcript levels could mainly result from events in selected intrafollicular

cell subpopulations outside of the hair matrix. Interestingly, long-term T4 treatment also in-

creased clock gene expression in bulge epithelial stem cells (Fig 4). Moreover, long-term TH re-

ceptor stimulation may induce complex gene regulation cascades that impact on intrafollicular

clock gene expression and reverse the effects of a short-term pulse of T4 treatment. One poten-

tial mechanism is via T4 conversion to T3 which in turn leads to production NCOR1. NCOR1

is believed to associate with the accessory clock loop involving REV-ERBα with ultimately re-

presses BMAL1, CLOCK and therefore PER1 production [59].

There are many additional factors to consider in relation to the core clock including histone

modifications [60,61], post translational modulations and the potential for novel clock genes

such as CHRONO [61]. Other factors include alternate splicing such as the U2-auxillary-factor

26 (U2AF26) variant which leads to destabilisation of PER1 [62] and microRNAs such as

miR192/194 which regulates PER [63]. It could be one or a variety of these factors that link thy-

roid hormones with HF molecular clock activity or via direct modulation of TH transcription.

In regards to the latter however, whilst there is a sequence matching reported thyroid response
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element sequences (T(A/G)AGGTCA) [64] in the sequence for BMAL1 (From ENSEMBL),

this does not occur in the promoter region [65]. This render it unlikely that the transcriptional

regulation of these genes via thyroxine operates in the classical TRE-mediated manner. An al-

ternative possibility is that clock genes regulate Deiodinase 2 (DIO2) enzyme which converts

T4 to the more active triiodothyroinine (T3) in a manner similar to that in the hypothalamus

[66]. This would need to be examined I future experiments.

The evidence provided here that T4 modulates not only the central, but also the peripheral

clock, namely in human HFs, has important clinical implications. Following up the current

study on the clinical level, it will be interesting to examine, next, whether and how the expres-

sion of PER1 and BMAL1 mRNA and protein change in the scalp skin of patients with thyroid

dysfunction, even though confounding complex (neuro-) endocrinological abnormalities must

be taken into account in such patients that could have altered peripheral clock expression/

activity indirectly.

Our observations suggest that patients suffering from thyroid dysfunction are likely to also

show a disordered peripheral clock and that this may contribute to the overall pathology asso-

ciated with abnormally low or high serum TH levels. Furthermore, our study raises the intrigu-

ing possibility that, in diseases associated with clock dysfunction, such as hypertension and

type 2 diabetes [9–11], short-term, pulsatile treatment with T4 might permit one to modulate

circadian activity in diseased peripheral tissues in a therapeutically beneficial manner, therefore

providing a novel strategy for differential endocrine “peripheral clock therapy”.

Materials and Methods

Human hair follicle collection and culture

Discarded human HFs from hair transplant surgery were obtained with full written consent ad-

hering to the ‘declaration of Helsinki principles’. Human tissue was stored in a registered bio-

bank following human tissue act guidelines and stored with ethical and institutional approval

from the University of Manchester.

Human organ culture

Human scalp HFs were dissected on the day of surgery from surrounding tissue and cultured

at 37°C with 5% CO2 in a minimal media of William’s E media (Gibco, Life technologies) sup-

plemented with 2mM of L-glutamine (Gibco), 10ng/ml hydrocortisone (Sigma-Aldrich), 10μg/

ml insulin (Sigma-Aldrich) and 1% penicillin/streptomycin mix (Gibco) [67]. On the following

day HFs were treated with 100nM of dexamethasone for 30 minutes to rest HF clock activity at

8:30am so all HFs had synchronised activity. At 9am HFs were cultured in minimal media

(William’s E media with clinically physiologically relevant levels of T4 (100nM) [35] (Sigma-

Aldrich, Dorset, UK) with a parallel control. HFs were either snap frozen in OCT or RNAlater

(Ambion, Connecticut, USA). For 6 day culture HFs were taken at 9am and 3pm to exclude

that any differences in protein level were caused by any diurnal expression changes.

Time course experiments

For time course experiments HF clock activity was synchronised and HFs for 30 minutes with

dexamethasone. Following synchronisation HFs were cultured with 100nM T4. HFs were re-

moved from culture immediately after synchronisation (0 hours) and then subsequently sam-

pled every 6 hours for 48 hours. Five HFs were taken from control and treated at each time

point which were pooled for RNA extraction. Four time course cultures were completed in

total, two donors for 48 hours and an additional two for 24 hours. For the immunofluorescence
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experiments, 6 hair follicles were embedded in OCT at each time point (0–24 hours) per donor

(3 donors used in total for protein data).

RNA extraction and qRT-PCR

HF RNA was extracted using an RNeasy micro kit (Qiagen, Manchester, UK). Complimentary

DNA was synthesised from this using a Tetro cDNA synthesis kit (Bioline, London, UK) and

used for qRT-PCR at 10ng/μl per well. Quantitative-PCR was performed using the StepOne

real time PCR system (Applied Biosystems, Warrington, UK) using Taqman (Applied Biosys-

tems) fast Advance master mix and probes listed in S1 Table. Results were performed in tripli-

cate for each experiment. For experiments looking at the bulge clock gene expression HFs were

bisected with a scalpel above the HF bulb separating the proliferating bulb and the upper ORS

containing the bulge region. RNA was extracted from each region separately.

Immunofluorescence

Human HF cryosections (5μm thick) were fixed at -20°C in acetone (PER1, rabbit-anti human

PER1 (Santa Cruz)) stain or methanol (BMAL1, rabbit-anti human (genetex)). HFs were

washed in PBS and pre-incubated with 10% normal goat serum. For dual stains with K15, the

protocol for either PER1 or BMAL1 was followed with the addition of mouse- anti K15

(Abcam, Cambridge, UK). Clock proteins were stained green using goat- anti rabbit Alexafluor

488 (Life technologies, Paisley, UK) secondary antibody. K15 was visualised in red using goat-

anti-mouse Alexafluore 594. HF sections were subsequently imaged using a Keyence Biozero

fluorescence microscope (Osaka, Japan).

Immunohistomorphometry

Using the microscope images, sections were analysed using image J. Images were converted to

8-bit to reduce the background. Three background measurements were taken and subtracted

from fluorescence readings (corrected fluorescence). To measure fluorescence two rectangles

of set size were used encompassing the positive signal, one on the right of the dermal papilla

and one on the right. This methodology was modified from previous studies [26,32,68]. Mea-

surements were taken from three images for each HF from multiple HFs and donors.

Statistical analysis

All statistical analysis was performed using Graphpad prism 6. Data was first assessed for nor-

mality using a D’Agostino-Pearson test. For normally distributed data, to test for significance,

a two-tailed student’s Ttest was used. Where the data did not follow a normal distribution a

Mann-Whitney test was used. Data was corrected for multiple comparisons using the Holm-

Sidak equation. Data was considered statistically significant if the P value was less than 0.05.

The software package R (version 3.1.2) [69] was used to assess quantitatively whether tran-

scripts oscillated over using the JTK cycle algorithm (version 2.1) [47]. To assess whether there

was a difference in amplitude between control and T4 treated HFs the estimated amplitude

(AMP) measurement calculated for each donor for each gene was compared using a Mann-

Whitney test.

Supporting Information

S1 Fig. Confirmation of the role of thyroxine (T4) on hair follicle (HF) physiology. Thyrox-

ine has been shown to promote melanin production in HFs and prolong anagen. To confirm

this HFs were cultured in the presence or absence of T4 and the percentage remaining in
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anagen (a.) was assessed by morphological criteria and melanin content was assessed by Mas-

son-Fontana. Results demonstrated that in the T4 treated group, a significantly higher percent-

age of HFs remained in anagen (a.) and had a higher melanin content (b.) confirming previous

results (mean (SD), � p<0.05, �� p<0.001, Student’s Ttest).

(PDF)

S1 Table. A list of Taqman advance probes used for qRT-PCR.

(PDF)
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