123 research outputs found

    Usefulness of regional right ventricular and right atrial strain for prediction of early and late right ventricular failure following a left ventricular assist device implant: A machine learning approach

    Get PDF
    Background: Identifying candidates for left ventricular assist device surgery at risk of right ventricular failure remains difficult. The aim was to identify the most accurate predictors of right ventricular failure among clinical, biological, and imaging markers, assessed by agreement of different supervised machine learning algorithms. Methods: Seventy-four patients, referred to HeartWare left ventricular assist device since 2010 in two Italian centers, were recruited. Biomarkers, right ventricular standard, and strain echocardiography, as well as cath-lab measures, were compared among patients who did not develop right ventricular failure (N = 56), those with acute–right ventricular failure (N = 8, 11%) or chronic–right ventricular failure (N = 10, 14%). Logistic regression, penalized logistic regression, linear support vector machines, and naïve Bayes algorithms with leave-one-out validation were used to evaluate the efficiency of any combination of three collected variables in an “all-subsets” approach. Results: Michigan risk score combined with central venous pressure assessed invasively and apical longitudinal systolic strain of the right ventricular–free wall were the most significant predictors of acute–right ventricular failure (maximum receiver operating characteristic–area under the curve = 0.95, 95% confidence interval = 0.91–1.00, by the naïve Bayes), while the right ventricular–free wall systolic strain of the middle segment, right atrial strain (QRS-synced), and tricuspid annular plane systolic excursion were the most significant predictors of Chronic-RVF (receiver operating characteristic–area under the curve = 0.97, 95% confidence interval = 0.91–1.00, according to naïve Bayes). Conclusion: Apical right ventricular strain as well as right atrial strain provides complementary information, both critical to predict acute–right ventricular failure and chronic–right ventricular failure, respectively

    Bayesian Integration of Face and Low-Level Cues for Foveated Video Coding

    Full text link

    Clinical Profile of Cardiac Involvement in Danon Disease: A Multicenter European Registry

    Get PDF
    Background: The X-linked Danon disease manifests by severe cardiomyopathy, myopathy, and neuropsychiatric problems. We designed this registry to generate a comprehensive picture of clinical presentations and outcome of patients with Danon disease in cardiomyopathy centers throughout Europe. Methods: Clinical and genetic data were collected in 16 cardiology centers from 8 European countries. Results: The cohort comprised 30 male and 27 female patients. The age at diagnosis was birth to 42 years in men and 2 to 65 in women. Cardiac involvement was observed in 96%. Extracardiac manifestations were prominent in men but not in women. Left ventricular (LV) hypertrophy was reported in 73% of male and 74% of female patients. LV systolic dysfunction was reported in 40% of men (who had LV ejection fraction, 34±11%) and 59% of women (LV ejection fraction, 28±13%). The risk of arrhythmia and heart failure was comparable among sexes. The age of first heart failure hospitalization was lower in men (18±6 versus 28±17 years; P<0.003). Heart failure was the leading cause of death (10 of 17; 59%), and LV systolic dysfunction predicted an adverse outcome. Eight men and 8 women (28%) underwent heart transplantation or received an LV assist device. Our cohort suggests better prognosis of female compared with male heart transplant recipients. Conclusions: Danon disease presents earlier in men than in women and runs a malignant course in both sexes, due to cardiac complications. Cardiomyopathy features, heart failure and arrhythmia, are similar among the sexes. Clinical diagnosis and management is extremely challenging in women due to phenotypic diversity and the absence of extracardiac manifestations

    Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation

    Get PDF
    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases

    Cohesin Protects Genes against ÎłH2AX Induced by DNA Double-Strand Breaks

    Get PDF
    Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of ÎłH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls ÎłH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes ÎłH2AX spreading. Remarkably, depletion of cohesin leads to an increase of ÎłH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome

    A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection

    Get PDF
    There are two major and alternative pathways to repair DNA double-strand breaks: non-homologous end-joining and homologous recombination. Here we identify and characterize novel factors involved in choosing between these pathways; in this study we took advantage of the SeeSaw Reporter, in which the repair of double-strand breaks by homology-independent or -dependent mechanisms is distinguished by the accumulation of green or red fluorescence, respectively. Using a genome-wide human esiRNA (endoribonuclease- prepared siRNA) library, we isolate genes that control the recombination/endjoining ratio. Here we report that two distinct sets of genes are involved in the control of the balance between NHEJ and HR: those that are required to facilitate recombination and those that favour NHEJ. This last category includes CCAR2/DBC1, which we show inhibits recombination by limiting the initiation and the extent of DNA end resection, thereby acting as an antagonist of CtIP

    Blood Signature of Pre-Heart Failure: A Microarrays Study

    Get PDF
    International audienceBACKGROUND: The preclinical stage of systolic heart failure (HF), known as asymptomatic left ventricular dysfunction (ALVD), is diagnosed only by echocardiography, frequent in the general population and leads to a high risk of developing severe HF. Large scale screening for ALVD is a difficult task and represents a major unmet clinical challenge that requires the determination of ALVD biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: 294 individuals were screened by echocardiography. We identified 9 ALVD cases out of 128 subjects with cardiovascular risk factors. White blood cell gene expression profiling was performed using pangenomic microarrays. Data were analyzed using principal component analysis (PCA) and Significant Analysis of Microarrays (SAM). To build an ALVD classifier model, we used the nearest centroid classification method (NCCM) with the ClaNC software package. Classification performance was determined using the leave-one-out cross-validation method. Blood transcriptome analysis provided a specific molecular signature for ALVD which defined a model based on 7 genes capable of discriminating ALVD cases. Analysis of an ALVD patients validation group demonstrated that these genes are accurate diagnostic predictors for ALVD with 87% accuracy and 100% precision. Furthermore, Receiver Operating Characteristic curves of expression levels confirmed that 6 out of 7 genes discriminate for left ventricular dysfunction classification. CONCLUSIONS/SIGNIFICANCE: These targets could serve to enhance the ability to efficiently detect ALVD by general care practitioners to facilitate preemptive initiation of medical treatment preventing the development of HF

    Modeling double strand break susceptibility to interrogate structural variation in cancer

    Get PDF
    Abstract Background Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). Results We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. Conclusions We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors

    Pursuing resilience in architectural design through international experimental projects: exploring new boundaries in the design studio pedagogy.

    Get PDF
    In response to the current global crisis, there is a growing demand for responsible behaviour in designing and building that can accommodate user needs through the design process. This chapter describes an innovative approach to the design process aiming to generate a model adopted by an international collaboration who are reconsidering the traditional design process and addressing a new paradigm of the thinking process. The project is experimental in nature and discusses the educational frameworks in architecture. It optimises a model, which demonstrates breakthroughs and trend-setting educational approaches and is potentially transferable to a range of other professions. The chapter argues that the educational ethos of ‘ethic of resilience’ should be pursued by pushing the boundaries of the conventional Design Studio towards the formation of adaptive system settings. All the participants at the various stages of the innovative educational framework, named Build Our Nation (BON) and its first application Taifa Letu Tujenge (TLT), have already demonstrated, on one hand to be able to learn from the experience achieved from various stages undertaken in the past, and, on the contrary, to be flexible enough to proceed with changes reflecting on the external conditions. The vision is that the Higher Educational Institutions and, especially, universities must become more co-productive actors in society. It can be useful to think of a university as a manufacturer; and subsequently, a manufacturing company as an advanced workshop; a workshop as a real-world project; therefore, a real-world project connoted back to the meaning of university. This vicious cycle of pedagogy embedded in learning and teaching should be central to any higher education focusing on design and research aiming to inform each other through the values of social capital

    Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair

    Get PDF
    The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells
    • 

    corecore