40 research outputs found

    Remote Electrical Stimulation by Means of Implanted Rectifiers

    Get PDF
    Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants – batteries and inductive couplers – comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 ”m) deliverable by injection are easily conceivable

    The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    Get PDF
    BACKGROUND: The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae) is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. METHODS: The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v.) diabetic rabbits, after oral administration at doses of 0.5, 0.75 and 1.0 ml/kg body weight. Blood samples were collected from the marginal ear vein before and also at 4, 6, 8, 10, 12, 16, 18, 20 & 24 h after drug administration and blood glucose was analyzed by Nelson-Somogyi's method using a visible spectrophotometer. The data was compared statistically by using Student's t-test. RESULTS: The leaf juice of C. roseus produced dose-dependent reduction in blood glucose of both normal and diabetic rabbits and comparable with that of the standard drug, glibenclamide. The results indicate a prolonged action in reduction of blood glucose by C. roseus and the mode of action of the active compound(s) of C. roseus is probably mediated through enhance secretion of insulin from the ÎČ-cells of Langerhans or through extrapancreatic mechanism. CONCLUSIONS: The present study clearly indicated a significant antidiabetic activity with the leaf juice of Catharanthus roseus and supports the traditional usage of the fresh leaves by Ayurvedic physicians for the control of diabetes

    Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments

    Get PDF
    Clinical electroporation (EP) is a rapidly advancing treatment modality that uses electric pulses to introduce drugs or genes into, e.g., cancer cells. The indication of successful EP is an instant plasma membrane permeabilization in the treated tissue. A noninvasive means of monitoring such a tissue reaction represents a great clinical benefit since, in case of target miss, retreatment can be performed immediately. We propose diffusion-weighted magnetic resonance imaging (DW-MRI) as a method to monitor EP tissue, using the concept of the apparent diffusion coefficient (ADC). We hypothesize that the plasma membrane permeabilization induced by EP changes the ADC, suggesting that DW-MRI constitutes a noninvasive and quick means of EP verification. In this study we performed in vivo EP in rat brains, followed by DW-MRI using a clinical MRI scanner. We found a pulse amplitude–dependent increase in the ADC following EP, indicating that (1) DW-MRI is sensitive to the EP-induced changes and (2) the observed changes in ADC are indeed due to the applied electric field

    Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors

    Get PDF
    The influence of eutrophication of fluvial ecosystems (caused by increased phosphorus concentrations) on periphyton Cu sensitivity is explored from a multi-scale perspective, going from the field to the laboratory. The study design included three tiers: a field study including the characterization of land use and the ecological state of the corresponding river sections in the FluviĂ  River watershed, an experimental investigation performed with natural periphyton from the previously studied stream sites in indoor channels, and finally a culture study in the laboratory. Results showed that differences in copper sensitivity of natural periphyton communities followed the gradient of nutrient concentration found in the field. Results from the culture experiments demonstrated that both, P-conditions during growth and P-content in the media are important factors modulating the toxicological response of algae to Cu. The observations from this study indicate that the ecological effects of metal pollution in rivers might be obscured by eutrophication

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
    corecore