92 research outputs found

    Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species in the Falkland Islands

    Get PDF
    Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare. The Hubbs principle, or “desperation hypothesis,” states that under such circumstances the rarer species is more likely to mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails (Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population “isolation with migration” coalescent analysis. While additional data are needed to determine if this event in the Falkland Islands was a rare singular occurrence, our results provide further support for the “desperation hypothesis,” which states that scarcity in one population and abundance of another will often lead to hybridization

    Observation and branching fraction measurement of the decay Ξb- → Λ0 bπ -

    Get PDF

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=−0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and ∣λ∣=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=−0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and ∣lambda∣=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Measurement of the Λb0→Λ(1520)ÎŒ+Ό−\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} differential branching fraction

    Get PDF
    The branching fraction of the rare decay Λb0→Λ(1520)ÎŒ+Ό−\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} is measured for the first time, in the squared dimuon mass intervals, q2q^2, excluding the J/ψJ/\psi and ψ(2S)\psi(2S) regions. The data sample analyzed was collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of $9\ \mathrm{fb}^{-1}.Theresultinthehighest. The result in the highest q^{2}interval, interval, q^{2} >15.0\ \mathrm{GeV}^2/c^4$, where theoretical predictions have the smallest model dependence, agrees with the predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-050.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D*) and R(D0)

    Get PDF
    The ratios of branching fractions R ( D ∗ ) ≡ B ( ÂŻ B → D ∗ τ − ÂŻ Îœ τ ) / B ( ÂŻ B → D ∗ ÎŒ − ÂŻ Îœ ÎŒ ) and R ( D 0 ) ≡ B ( B − → D 0 τ − ÂŻ Îœ τ ) / B ( B − → D 0 ÎŒ − ÂŻ Îœ ÎŒ ) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0     fb − 1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ − → ÎŒ − Îœ τ ÂŻ Îœ ÎŒ . The measured values are R ( D ∗ ) = 0.281 ± 0.018 ± 0.024 and R ( D 0 ) = 0.441 ± 0.060 ± 0.066 , where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ = − 0.43 . The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard model

    Precision measurement of CP violation in the penguin-mediated decay Bs0→ϕϕ

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay B 0 s → ϕ ϕ is performed using p p collision data collected by the LHCb experiment at the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6     fb − 1 . The C P -violating phase and direct C P -violation parameter are measured to be ϕ s ÂŻ s s s = − 0.042 ± 0.075 ± 0.009     rad and | λ | = 1.004 ± 0.030 ± 0.009 , respectively, assuming the same values for all polarization states of the ϕ ϕ system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using p p collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕ s ÂŻ s s s = − 0.074 ± 0.069     rad and | λ | = 1.009 ± 0.030 . This is the most precise study of time-dependent C P violation in a penguin-dominated B meson decay. The results are consistent with C P symmetry and with the standard model predictions

    Test of lepton universality in b→sℓ+ℓ− decays

    Get PDF
    The first simultaneous test of muon-electron universality using B + → K + ℓ + ℓ − and B 0 → K * 0 ℓ + ℓ − decays is performed, in two ranges of the dilepton invariant-mass squared, q 2 . The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9     fb − 1 . Each of the four lepton universality measurements reported is either the first in the given q 2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model

    Modification of χc1(3872) and ψ(2S) production in pPb collisions at √sNN = 8.16 TeV

    Get PDF
    The LHCb Collaboration measures production of the exotic hadron χc1(3872) in proton-nucleus collisions for the first time. Comparison with the charmonium state ψ(2S) suggests that the exotic χc1(3872) experiences different dynamics in the nuclear medium than conventional hadrons, and comparison with data from proton-proton collisions indicates that the presence of the nucleus may modify χc1(3872) production rates. This is the first measurement of the nuclear modification factor of an exotic hadron

    Amplitude analysis of the B0→K*0ÎŒ+Ό− decay

    Get PDF
    An amplitude analysis of the B 0 → K * 0 ÎŒ + ÎŒ − decay is presented using a dataset corresponding to an integrated luminosity of 4.7     fb − 1 of p p collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q 2 -unbinned amplitude analysis, where q 2 is the ÎŒ + ÎŒ − invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b - to s -quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations
    • 

    corecore