103 research outputs found

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF
    Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation.Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point.Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices

    Analysis of Alfven eigenmodes destabilization by energetic particles in TJ-II using a Landau-closure model

    Get PDF
    Alfven Eigenmodes (AE) can be destabilized by energetic particles in neutral beam injection (NBI) heated plasmas through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system using the reduced MHD equations, density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics. A closure relation adds the Landau damping and resonant destabilization effects in the model. We apply the model to study the Alfven modes stability in TJ-II, performing a parametric analysis in a range of realistic values of energetic particle beta (beta(f)), ratios of thermal/Alfven velocities (V-th/V-A0), energetic particle density profiles and toroidal modes (n) including toroidal and helical couplings. The study predicts a large helical coupling between different toroidal modes and the destabilization of helical Alfven eigenmodes (HAE) with frequencies similar to the AE activity measured in TJ-II, between 50-400 kHz. The analysis has also revealed the destabilization of GAE (global Alfven eigenmodes), TAE (toroidal Alfven eigenmodes) and EPM (energetic particle modes). For the modes considered here, optimized TJ-II operations require a t profile in the range of [0.845, 0.979] to stabilize AEs in the inner and middle plasma. AEs in the plasma periphery cannot be fully stabilized, although for a configuration with t = [0.945, 1.079], only n = 7, 11, 15 AE are unstable with a growth rate 4 times smaller compared to the standard t = [1.54, 1.68] case and a frequency of 100 kHz. We reproduce the frequency sweeping evolution of the AE frequency observed in TJ-II as the t profile is varied. The AE frequency sweeping is caused by consecutive changes of the instability dominant modes between different helical families.This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research was sponsored in part by the Ministerio of Economia y Competitividad of Spain under project no. ENE2015-68265-P. We also want to acknowledge Alexander Melnikov and the TJ-II group at CIEMAT for providing us the initial VMEC equilibria and useful discussions regarding the experimental phenomena

    Gyrokinetic study of turbulence suppression in a JET-ILW power scan

    Get PDF
    For exploring tokamak operation regimes that deliver both high beta and good energy confinement, power scans at JET with ITER-like wall have been performed. Relatively weak degradation of the confinement time coincides with increased core temperature of the ions at high power. The changes in core turbulence characteristics during a power scan with an optimized (broad) q profile are analyzed by means of nonlinear gyrokinetic simulations. The increase in beta is crucial for stabilizing ion temperature gradient driven turbulence, accompanied by increased ion to electron temperature ratio, the presence of a dynamic fast ion species, as well as the geometric stabilization by increased thermal and suprathermal pressure. A sensitivity study with respect to the q profile reveals that electromagnetic effects are more pronounced at larger values of q. Further, it is confirmed that turbulence suppression due to rotation becomes less effective in such strongly electromagnetic systems. Electrostatic simplified models may thus perform well in present-day devices, in which high beta is often correlated with high rotation, but provide poor extrapolation towards low rotation devices. Implications for ITER and reactor plasmas are discussed.</p
    corecore