1,194 research outputs found
Specifying Multimedia Binding Objects in Z
The current standardisation activity of Open Distributed Processing (ODP) has attempted to incorporate multimedia flows of information into its architecture through the idea of stream interfaces. At present the reference model of ODP (ODP-RM) abstracts from the precise nature of the flows of information. As a consequence of this, the ODPRM only deals with syntactic aspects of stream interfaces and does not require them to satisfy any behavioural considerations. It is shown in this paper how the formal notation Z can be used to reason about these flows of information in a manner that enables behavioural as well as temporal aspects to be considered. The example given to highlight the approach is the ODP concept of a binding object
Investigations into vocal doses and parameters pertaining to primary school teachers in classrooms
Investigations into vocal doses and parameters were carried out on 40 primary school teachers (36 females and 4 males) in six schools in Italy, divided into two groups of three, A and B, on the basis of the type of building and the mid-frequency reverberation time in the classrooms, which was 1.13 s and 0.79 s, respectively. A total of 73 working-day samples were collected (66 for females and 7 for males), from which 54 traditional lessons were analyzed separately. The average value over the working days of the mean sound pressure level of the voiced speech at 1 m from the teacher's mouth was 62.1 dB for the females and 57.7 dB for the males, while the voicing time percentage was 25.9% and 25.1%, respectively. Even though the vocal doses and parameters did not differ for the two school groups, the differences in the subjective scores were significant, with enhanced scores in group B. A 0.72 dB increase in speech level per 1 dB increase in background noise level, LA90, was found during traditional lessons, as well as an increase in the mean value of the fundamental frequency with an increase in LA90, at a rate of 1.0 Hz/dB
Report on the Standardization Project ``Formal Methods in Conformance Testing''
This paper presents the latest developments in the “Formal Methods in Conformance
Testing” (FMCT) project of ISO and ITU–T. The project has been initiated to study
the role of formal description techniques in the conformance testing process. The goal
is to develop a standard that defines the meaning of conformance in the context of formal
description techniques. We give an account of the current status of FMCT in the
standardization process as well as an overview of the technical status of the proposed
standard. Moreover, we indicate some of its strong and weak points, and we give some
directions for future work on FMCT
Standardisation of magnetic nanoparticles in liquid suspension
Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way
Optimal packetisation of MPEG-4 using RTP over mobile networks
The introduction of third-generation wireless networks should result in real-time mobile
video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime
transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the
optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic
schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS
(general packet radio service) network are used to validate the analysis of the most efficient scheme.
Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further
simulations demonstrate the benefits of the adaptive system
Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain
Specifying Hardware Timing with ET-LOTOS (extended version)
It is explained how DILL (Digital Logic in LOTOS) can be used to specify and analyse hardware timing characteristics using ET-LOTOS (Enhanced Timed LOTOS), a timed extension of the ISO standard formal language LOTOS (Language of Temporal Ordering Specification). Hardware component functionality and timing characteristics are rigorously specified and then validated. As will be seen, subtle timing problems can be found by using this approach
Protocol Techniques for Testing Radiotherapy Accelerators
The nature of radiotherapy accelerators is briefly explained. It is argued that these complex safety-critical systems need a systematic basis for testing their software. The paper describes a novel application of protocol specification and testing methods to radiotherapy accelerators. An outline specification is given in LOTOS (Language Of Temporal Ordering Specification) of the accelerator control system. It is completely infeasible to use this directly for test generation. Instead, specification inputs are restricted using annotations in a Parameter Constraint Language. This is automatically translated into LOTOS and combined with the accelerator specification. It then becomes manageable to generate tests automatically of the actual accelerator to check that it agrees with its specification according to the relation ioconf (input-output conformance). Sample input annotations, their translation to LOTOS, and the resulting test cases are described
- …
