23 research outputs found

    Intensive community care services for children and young people in psychiatric crisis: an expert opinion.

    Get PDF
    BACKGROUND: Children and young people's (CYP) mental health is worsening, and an increasing number are seeking psychiatric and mental health care. Whilst many CYPs with low-to-medium levels of psychiatric distress can be treated in outpatient services, CYPs in crisis often require inpatient hospital treatment. Although necessary in many cases, inpatient care can be distressing for CYPs and their families. Amongst other things, inpatient stays often isolate CYPs from their support networks and disrupt their education. In response to such limitations, and in order to effectively support CYPs with complex mental health needs, intensive community-based treatment models, which are known in this paper as intensive community care services (ICCS), have been developed. Although ICCS have been developed in a number of settings, there is, at present, little to no consensus of what ICCS entails. METHODS: A group of child and adolescent mental health clinicians, researchers and academics convened in London in January 2023. They met to discuss and agree upon the minimum requirements of ICCS. The discussion was semi-structured and used the Dartmouth Assertive Community Treatment Fidelity Scale as a framework. Following the meeting, the agreed features of ICCS, as described in this paper, were written up. RESULTS: ICCS was defined as a service which provides treatment primarily outside of hospital in community settings such as the school or home. Alongside this, ICCS should provide at least some out-of-hours support, and a minimum of 90% of CYPs should be supported at least twice per week. The maximum caseload should be approximately 5 clients per full time equivalent (FTE), and the minimum number of staff for an ICCS team should be 4 FTE. The group also confirmed the importance of supporting CYPs engagement with their communities and the need to remain flexible in treatment provision. Finally, the importance of robust evaluation utilising tools including the Children's Global Assessment Scale were agreed. CONCLUSIONS: This paper presents the agreed minimum requirements of intensive community-based psychiatric care. Using the parameters laid out herein, clinicians, academics, and related colleagues working in ICCS should seek to further develop the evidence base for this treatment model

    Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic <it>in vivo </it>situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.</p> <p>Methods</p> <p>Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).</p> <p>Results</p> <p>BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.</p> <p>Conclusion</p> <p>This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.</p

    The role of ALOX5AP, LTA4H and LTB4R polymorphisms in determining baseline lung function and COPD susceptibility in UK smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown evidence that polymorphisms within genes controlling leukotriene B<sub>4 </sub>(LTB<sub>4</sub>) production (<it>ALOX5AP </it>and <it>LTA4H</it>) are associated with asthma susceptibility in children. Evidence also suggests a potential role of LTB<sub>4 </sub>in COPD disease mechanisms including recruitment of neutrophils to the lung. The aim of the current study was to see if these SNPs and those spanning the receptor genes for LTB<sub>4 </sub>(<it>LTB4R1 </it>and <it>LTB4R2</it>) influence baseline lung function and COPD susceptibility/severity in smokers.</p> <p>Methods</p> <p>Eight <it>ALOX5AP</it>, six <it>LTA4H </it>and six <it>LTB4R </it>single nucleotide polymorphisms (SNPs) were genotyped in a UK Smoking Cohort (n = 992). Association with baseline lung function (FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio) was determined by linear regression. Logistic regression was used to compare smoking controls (n = 176) with spirometry-defined COPD cases (n = 599) and to more severe COPD cases (GOLD stage 3 and 4, n = 389).</p> <p>Results</p> <p>No association with <it>ALOX5AP</it>, <it>LTA4H </it>or <it>LTB4R </it>survived correction for multiple testing. However, we showed modest association with <it>LTA4H </it>rs1978331C (intron 11) with increased FEV<sub>1 </sub>(p = 0.029) and with increased FEV<sub>1</sub>/FVC ratio (p = 0.020).</p> <p>Conclusions</p> <p>These data suggest that polymorphisms spanning <it>ALOX5AP</it>, <it>LTA4H </it>and the <it>LTB4R </it>locus are not major determinants of baseline lung function in smokers, but provide tentative evidence for <it>LTA4H </it>rs1978331C (intron 11) in determining baseline FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio in Caucasian Smokers in addition to our previously identified role in asthma susceptibility.</p

    Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1

    Get PDF
    Cells generate inflammatory responses to bacteria when pattern recognition receptors bind pathogen-associated molecules such as lipopolysaccharide. Cells may also respond to tissue damage by sensing damage-associated molecules. Postpartum bacterial infections of the bovine uterus cause endometritis but the risk of disease is increased by tissue trauma triggered by dystocia. Animals that suffered dystocia had increased concentrations of inflammatory mediators IL-8, IL-1β and IL-1α in vaginal mucus 3 weeks postpartum, but they also had more bacteria than normal animals. Ex vivo organ cultures of endometrium, endometrial cells and peripheral blood monocytes did not generate inflammatory responses to prototypical damage molecules, HMGB1 or hyaluronan, or to necrotic cells; although they secreted IL-6 and IL-8 in a concentration-dependent manner when treated with IL-1α. However, necrotic endometrial cells did not accumulate intracellular IL-1α or release IL-1α, except when pre-treated with lipopolysaccharide or bacteria. Endometrial cell inflammatory responses to IL-1α were dependent on the cognate receptor IL-1R1, and the receptor adaptor protein MyD88, and the inflammatory response to IL-1α was independent of the response to lipopolysaccharide. Rather than a typical damage-associated molecule, IL-1α acts to scale the inflammatory response in recognition that there is a combination of pathogen challenge followed by endometrial cell damage

    Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells

    Get PDF
    Like other arthropod-borne viruses (arboviruses), mosquito-borne dengue virus (DENV) is maintained in an alternating cycle of replication in arthropod and vertebrate hosts. The trade-off hypothesis suggests that this alternation constrains DENV evolution because a fitness increase in one host usually diminishes fitness in the other. Moreover, the hypothesis predicts that releasing DENV from host alternation should facilitate adaptation. To test this prediction, DENV was serially passaged in either a single human cell line (Huh-7), a single mosquito cell line (C6/36), or in alternating passages between Huh-7 and C6/36 cells. After 10 passages, consensus mutations were identified and fitness was assayed by evaluating replication kinetics in both cell types as well as in a novel cell type (Vero) that was not utilized in any of the passage series. Viruses allowed to specialize in single host cell types exhibited fitness gains in the cell type in which they were passaged, but fitness losses in the bypassed cell type, and most alternating passages, exhibited fitness gains in both cell types. Interestingly, fitness gains were observed in the alternately passaged, cloned viruses, an observation that may be attributed to the acquisition of both host cell–specific and amphi-cell-specific adaptations or to recovery from the fitness losses due to the genetic bottleneck of biological cloning. Amino acid changes common to both passage series suggested convergent evolution to replication in cell culture via positive selection. However, intriguingly, mutations accumulated more rapidly in viruses passed in Huh-7 cells than in those passed in C6/36 cells or in alternation. These results support the hypothesis that releasing DENV from host alternation facilitates adaptation, but there is limited support for the hypothesis that such alternation necessitates a fitness trade-off. Moreover, these findings suggest that patterns of genetic evolution may differ between viruses replicating in mammalian and mosquito cells

    Sputum and nasal lavage lung-specific biomarkers before and after smoking cessation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the effect of smoking cessation on airway inflammation. Secretory Leukocyte Protease Inhibitor (SLPI), Clara Cell protein 16 (CC16), elafin and human defensin beta-2 (HBD-2) protect human airways against inflammation and oxidative stress. In this longitudinal study we aimed to investigate changes in sputum and nasal lavage SLPI, CC16, elafin and HBD-2 levels in healthy smokers after 6 and 12 months of smoking cessation.</p> <p>Methods</p> <p>Induced sputum and nasal lavage was obtained from healthy current smokers (n = 76) before smoking cessation, after 6 months of smoking cessation (n = 29), after 1 year of smoking cessation (n = 22) and from 10 healthy never smokers. SLPI, CC16, elafin and HBD-2 levels were measured in sputum and nasal lavage supernatants by commercially available ELISA kits.</p> <p>Results</p> <p>Sputum SLPI and CC-16 levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.005 and p = 0.08 respectively). SLPI and CC16 levels did not differ before and 6 months after smoking cessation (p = 0.118 and p = 0.543 respectively), neither before and 1 year after smoking cessation (p = 0.363 and p = 0.470 respectively). Nasal lavage SLPI was decreased 12 months after smoking cessation (p = 0.033). Nasal lavage elafin levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.007), but there were no changes 6 months and 1 year after smoking cessation.</p> <p>Conclusions</p> <p>Only nasal lavage SLPI decrease after 1 year after smoking cessation. We may speculate that there is an ongoing inflammatory process stimulating the production of counter-regulating proteins in the airways of healthy ex-smokers.</p

    Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine.</p> <p>Objective</p> <p>To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease.</p> <p>Methods</p> <p>Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects.</p> <p>Results</p> <p>The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (r<sub>S </sub>= 0.53, p < 0.05).</p> <p>Conclusions</p> <p>In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.</p

    Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus

    Get PDF
    Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host

    Variation in RNA Virus Mutation Rates across Host Cells

    Get PDF
    It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature
    corecore