80 research outputs found

    Genome variation and molecular epidemiology of Salmonella enterica serovar Typhimurium pathovariants

    Get PDF
    Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S. Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S. Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S. Typhimurium. Here, we review the epidemiological record of S. Typhimurium and studies of the host-pathogen interactions of diverse strains of S. Typhimurium. We present the concept of distinct pathovariants of S. Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S. Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve

    Plant-Derived Polysaccharide Supplements Inhibit Dextran Sulfate Sodium-Induced Colitis in the Rat

    Get PDF
    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count

    Immune sensitization of equine bronchus: glutathione, IL-1β expression and tissue responsiveness

    Get PDF
    BACKGROUND: Increasing clinical epidemiological and experimental evidence indicates that excess of production of reactive oxygen free radicals (ROS) induced by an oxidative stress is involved in the pathogenesis of a number of human airway disorders, as well as equine recurrent airway obstruction. Free-radicals modulate the activation of transcription factors, such as nuclear factor-(NF)-κB and activator protein (AP)-1, in several different cells. This activation leads to expression of many pro-inflammatory cytokines, including interleukin (IL)-1β. We have hypothesized that equine airway sensitization might induce an oxidative stress and increase the ROS production, which in turn might enhance a production of IL-1β and airway hyperresponsiveness. METHODS: We have examined the effect of passive sensitization on IL-1β mRNA expression and electrical field stimulation (EFS)-induced contraction in equine isolated bronchi, and the potential interference of reduced-glutathione (GSH), an antioxidant, with these responses. Bronchi passively sensitized with serum from animals suffering from heaves and having high total level of IgE, and control tissues, either pretreated or not with GSH (100 μM), were used to quantify IL-1β mRNA. Other tissues were used to study the effect of EFS (3–10–25 Hz). RESULTS: Mean IL-1β mRNA expression was higher in passively sensitized than in control rings. GSH significantly (p < 0.05) reduced the IL-1β mRNA expression only in passively sensitized bronchi. ELF induced a frequency-dependent contraction in both non-sensitized and passively sensitized tissues, with a significantly greater response always observed in sensitized tissues. GSH did not modify the EFS-induced contraction in non-sensitized bronchi, but significantly (p < 0.05) decreased it in passively sensitized tissues. CONCLUSION: Our data indicate that the passive sensitization of equine bronchi induces inflammation and hyperresponsiveness. These effects might be due to an oxidative stress because a pretreatment with GSH decreased the increased IL-1β mRNA expression and responsiveness to EFS of passively sensitized bronchi

    Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymph node of cows during the initial response after intramammary challenge with E. coli endotoxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first hours after antigen stimulation, interactions occur influencing the outcome of the immunological reaction. Immunoglobulins originate in blood and/or are locally synthesized. The transfer of Ig isotypes (Igs) in the udder has been studied previously but without the possibility to distinguish between the endothelium and the epithelium. The purpose of this study was to map the Ig transfer through each barrier, separately, and Ig transfer in the local lymph nodes of the bovine udder during the initial innate immune response.</p> <p>Methods</p> <p>The content of IgG1, IgG2, IgM, IgA and albumin (BSA) was examined in peripheral/afferent mammary lymph and lymph leaving the supramammary lymph nodes, and in blood and milk before (0 h) and during 4 hours after intramammary challenge with <it>Esherichia coli </it>endotoxin in 5 cows.</p> <p>Results</p> <p>Igs increased most rapidly in afferent lymph resulting in higher concentrations than in efferent lymph at postinfusion hour (PIH) 2, contrary to before challenge. Ig concentrations in milk were lower than in lymph; except for IgA at 0 h; and they increased more slowly. <it>Afferent lymph:serum </it>and <it>efferent lymph:serum </it>concentration ratios (CR) of Igs were similar to those of BSA but slightly lower. <it>Milk:afferent lymph </it>(M:A) CRs of each Ig, except for IgG2, showed strikingly different pattern than those of BSA. The M:A CR of IgG1, IgM and IgA were higher than that of BSA before challenge and the CR of IgA and IgG1 remained higher also thereafter. At PIH 2 there was a drop in Ig CRs, except for IgG2, in contrast to the BSA CR which gradually increased. The M:A CR of IgM and Ig A <it>decreased </it>from 0 h to PIH 4, in spite of increasing permeability.</p> <p>Conclusion</p> <p>The transfer of Igs through the <it>endothelium </it>appeared to be merely a result of diffusion although their large molecular size may hamper the diffusion. The transfer through the <it>epithelium </it>and the Ig concentrations in milk seemed more influenced by selective mechanisms and local sources, respectively. Our observations indicate a selective mechanism in the transfer of IgG1 through the epithelium also in lactating glands, not previously shown; a local synthesis of IgA and possibly of IgM, released primarily into milk, not into tissue fluid; that IgG2 transfer through both barriers is a result of passive diffusion only and that the content of efferent lymph is strongly influenced by IgG1, IgM and IgA in the mammary tissue, brought to the lymph node by afferent lymph.</p

    The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice

    Get PDF
    African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (µMT) and IgM-deficient (IgM−/−) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei–infected µMT and IgM−/− mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in µMT mice as well as in IgM−/− mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection
    corecore