142 research outputs found

    Long-term effects of gestational nicotine exposure and food-restriction on gene expression in the striatum of adolescent rats

    Get PDF
    Gestational exposure to environmental toxins such as nicotine may result in detectable gene expression changes in later life. To investigate the direct toxic effects of prenatal nicotine exposure on later brain development, we have used transcriptomic analysis of striatal samples to identify gene expression differences between adolescent Lister Hooded rats exposed to nicotine in utero and controls. Using an additional group of animals matched for the reduced food intake experienced in the nicotine group, we were also able to assess the impact of imposed food-restriction on gene expression profiles. We found little evidence for a role of gestational nicotine exposure on altered gene expression in the striatum of adolescent offspring at a significance level of p0.5|, although we cannot exclude the possibility of nicotine-induced changes in other brain regions, or at other time points. We did, however, find marked gene expression differences in response to imposed food-restriction. Food-restriction resulted in significant group differences for a number of immediate early genes (IEGs) including Fos, Fosb, Fosl2, Arc, Junb, Nr4a1 and Nr4a3. These genes are associated with stress response pathways and therefore may reflect long-term effects of nutritional deprivation on the development of the stress system

    Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task

    Get PDF
    RATIONALE: Nicotinic receptors have been implicated in attentional performance. Nicotine can improve attention in animals and humans, but knowledge about relevant receptor subtypes is very limited. OBJECTIVES: The aim was to examine the role of α7 receptors in attentional performance of mice and in effects of nicotine. MATERIALS AND METHODS: Mice with targeted deletion of the gene coding for the α7 subunit of nicotinic receptors and wild-type controls were trained on a five-choice serial reaction time task with food reinforcers presented under varying parametric conditions. Nicotine was administered in a range of doses (0.001–1.0 mg/kg sc), including those reported to enhance attentional performance. RESULTS: Initially the α7(−/−) (knockout) mice responded less accurately and made more anticipatory responses. After task parameters were altered so that the time allowed for responding was reduced and anticipatory (impulsive) responses were punished by a time-out, the pattern of performance deficits changed; there were increased omission errors in α7(−/−) mice but normal levels of accuracy and anticipatory responding. Nicotine did not improve any measure of performance, either with the original training parameters or after retraining; the largest dose used (1.0 mg/kg) produced a general impairment of responding in α7(−/−) and wild-type mice. CONCLUSIONS: α7 nicotinic receptor knockout mice are impaired in performance of the 5-CSRTT, suggesting a possible role for α7 receptors in attentional processing. However, identification of a protocol for assessing attention-enhancing effects of nicotine in mice may require further modifications of test procedures or the use of different strains of animal

    Smoking patterns and stimulus control in intermittent and daily smokers

    Get PDF
    Intermittent smokers (ITS) - who smoke less than daily - comprise an increasing proportion of adult smokers. Their smoking patterns challenge theoretical models of smoking motivation, which emphasize regular and frequent smoking to maintain nicotine levels and avoid withdrawal, but yet have gone largely unexamined. We characterized smoking patterns among 212 ITS (smoking 4-27 days per month) compared to 194 daily smokers (DS; smoking 5-30 cigarettes daily) who monitored situational antecedents of smoking using ecological momentary assessment. Subjects recorded each cigarette on an electronic diary, and situational variables were assessed in a random subset (n = 21,539 smoking episodes); parallel assessments were obtained by beeping subjects at random when they were not smoking (n = 26,930 non-smoking occasions). Compared to DS, ITS' smoking was more strongly associated with being away from home, being in a bar, drinking alcohol, socializing, being with friends and acquaintances, and when others were smoking. Mood had only modest effects in either group. DS' and ITS' smoking were substantially and equally suppressed by smoking restrictions, although ITS more often cited self-imposed restrictions. ITS' smoking was consistently more associated with environmental cues and contexts, especially those associated with positive or "indulgent" smoking situations. Stimulus control may be an important influence in maintaining smoking and making quitting difficult among ITS. © 2014 Shiffman et al

    Personal genome testing: Test characteristics to clarify the discourse on ethical, legal and societal issues

    Get PDF
    Background: As genetics technology proceeds, practices of genetic testing have become more heterogeneous: many different types of tests are finding their way to the public in different settings and for a variety of purposes. This diversification is relevant to the discourse on ethical, legal and societal issues (ELSI) surrounding genetic testing, which must evolve to encompass these differences. One important development is the rise of personal genome testing on the basis of genetic profiling: the testing of multiple genetic variants simultaneously for the prediction of common multifactorial diseases. Currently, an increasing number of companies are offering personal genome tests directly to consumers and are spurring ELSI-discussions, which stand in need of clarification. This paper presents a systematic approach to the ELSI-evaluation of personal genome testing for multifactorial diseases along the lines of its test characteristics. Discussion: This paper addresses four test characteristics of personal genome testing: its being a non-targeted type of testing, its high analytical validity, low clinical validity and problematic clinical utility. These characteristics raise their own specific ELSI, for example: non-targeted genetic profiling poses serious problems for information provision and informed consent. Questions about the quantity and quality of the necessary information, as well as about moral responsibilities with regard to the provision of information are therefore becoming central themes within ELSI-discussions of personal genome testing. Further, the current low level of clinical validity of genetic profiles raises questions concerning societal risks and regulatory requirements, whereas simultaneously it causes traditional ELSI-issues of clinical genetics, such as psychological and health risks, discrimination, and stigmatization, to lose part of their relevance. Also, classic notions of clinical utility are challenged by the newer notion of 'personal utility.' Summary: Consideration of test characteristics is essential to any valuable discourse on the ELSI of personal genome testing for multifactorial diseases. Four key characteristics of the test - targeted/non-targeted testing, analytical validity, clinical validity and clinical utility - together determine the applicability and the relevance of ELSI to specific tests. The paper identifies and discusses four areas of interest for the ELSI-debate on personal genome testing: informational problems, risks, regulatory issues, and the notion of personal utility

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Drug Discrimination

    No full text
    corecore