14 research outputs found

    Modeling of Forecast Performance Indicators of Organizations

    No full text

    Figure 2

    No full text
    <p>A. Map showing position of Iceland relative to the East Atlantic Flyway (red arrows) and the North American Atlantic Flyway (yellow arrows). Flyways represent generalized migration movements of birds with most using only portions of the flyways. Actual regions of flyways used by migratory birds are dependent on species and breeding population. B. Map of Iceland depicting bird sampling locations (red dots) used in this study and Reykjavik (red star) is provided for reference. Breiðafjörður and Selfoss sampling locations are generalized as samples provided by hunters and fisherman were obtained over a larger area within these marked regions.</p

    Viruses recovered from Iceland wild birds in 2010–2011 with segment lineage detail.

    No full text
    <p>EU denotes the segment is most similar to Eurasian lineage viruses, AM denotes the segment is most similar to American lineage viruses. Within each segment column, segments that have the same color indicate a ≥99% nucleotide sequence similarity among that segment. * indicates a ≥99% similarity to only one other virus segment of the same color denoted by †. Bold text indicates novel virus assemblages.</p

    North Atlantic Migratory Bird Flyways Provide Routes for Intercontinental Movement of Avian Influenza Viruses

    No full text
    <div><p>Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.</p></div

    Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach

    Get PDF
    BACKGROUND: Kidney injuries provoke considerable adjustment of renal physiology, metabolism, and architecture to nephron loss. Despite remarkable regenerative capacity of the renal tissue, these adaptations often lead to tubular atrophy, interstial and glomerular scaring, and development of chronic kidney disease. The therapeutic strategies for prevention of the transition from acute kidney damage to a chronic condition are limited. The purpose of this study was to elucidate large-scale alterations of the renal cortex proteome in partially nephrecromized rats at an early stage of chronic kidney disease. METHODS: Sprague–Dawley 5/6 nephrectomized rats and sham-operated controls were sacrificed at day 28 post-surgery. To identify proteins with notable alteration of expression we applied a 2D-proteomics approach followed by mass-spectrometry. Altered expression of identified and related proteins was validated by Western blotting and immunohistochemistry. RESULTS: Proteins with increased levels of expression after partial nephrectomy were albumin and vimentin. Proteins with decreased expression were metabolic or mitochondrial. Western blotting analysis showed that the renal cortex of nephrectomized rats expressed decreased amount (by ~50%) of proteins from the inner mitochondrial compartment - the beta-oxidation enzyme MCAD, the structural protein GRP-75, and the oxidative phosphorylation protein COXIV. Mitochondrial DNA copy number was decreased by 30% in the cortex of PNx rats. In contrast, the levels of an outer mitochondrial membrane protein, VDAC1, remained unchanged in remnant kidneys. Mitochondrial biogenesis was not altered after renal mass ablation as was indicated by unchanged levels of PPARγ and PGC1α proteins. Autophagy related protein Beclin 1 was up-regulated in remnant kidneys, however the level of LC3-II protein was unchanged. BNIP3 protein, which can initiate both mitochondrial autophagy and cell death, was up-regulated considerably in kidneys of nephrecomized rats. CONCLUSIONS: The results of the study demonstrated that notable alterations in the renal cortex of 5/6 nephrectomized rats were associated with mitochondrial damage, however mitochondrial biogenesis and autophagy for replacement of damaged mitochondria were not stimulated. Accumulation of dysfunctional mitochondria after 5/6 nephrectomy may cause multiple adjustments in biosynthetic pathways, energy production, ROS signaling, and activation of pro-cell death regulatory pathways thus contributing to the development of chronic kidney disease
    corecore