4 research outputs found

    Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis is Associated with Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM

    Get PDF
    Objective-Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. Approach and Results-Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitationsequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. Conclusions-We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation

    Progression of Carotid Intima-Media Thickness as Predictor of Vascular Events Results from the IMPROVE Study

    No full text
    <p>Objective-To investigate whether several different measures of carotid intima-media thickness (IMT) progression are associated with subsequent vascular events and whether such associations are independent of baseline carotid atherosclerotic profile and Framingham risk factors.</p><p>Approach and Results-A longitudinal cohort study (the Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population study) was performed in 7 centers in 5 European countries (Finland, France, Italy, the Netherlands, and Sweden). Three thousand four hundred eighty-two subjects (median age 64.1 years; 47.8% men) with >= 3 vascular risk factors were recruited and monitored for a postprogression median follow-up of 21.5 months, during which time 129 subjects experienced a first vascular event (incidence of 20.4 per 1000 person-years). The 15th month progression of mean and maximum carotid IMT of the left and right common carotids, bifurcations, internal carotid arteries, and their composite measures, as well as the fastest IMTmax progression (Fastest-IMTmax-progr) detected in the whole carotid tree regardless of location, were used in statistical analyses. All carotid IMT measures showed significant progression during the first 15 months (P</p><p>Conclusions-The Fastest-IMTmax-progr, a novel approach to assess carotid IMT progression, identifies focal increases of carotid IMT and, in contrast to other progression variables, is associated with cardiovascular risk.</p>

    PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling

    No full text
    Rationale: Proprotein convertase subtilisins/kexins (PCSKs) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix (ECM) remodeling and mitogens. Objective: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. Methods and Results: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques, but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions vs. healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localised to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB and MMP2/MMP14. Here, PCSK6 was shown to co-localise and co-interact with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- vs. control mice revealed suppression of contractile SMC markers, ECM remodeling enzymes and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro lead to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB-induced cell proliferation and particularly migration. Conclusions: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling

    Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unlikely to be a causal factor in subclinical vascular remodelling using Mendelian randomisation

    Get PDF
    Background and aims: Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. Methods: We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. Results: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. Conclusions: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT. (C) 2017 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe
    corecore