24 research outputs found

    Exceptional river gorge formation from unexceptional floods

    Get PDF
    An understanding of rates and mechanisms of incision and knickpoint retreat in bedrock rivers is fundamental to perceptions of landscape response to external drivers, yet only sparse field data are available. Here we present eye witness accounts and quantitative surveys of rapid, amphitheatre-headed gorge formation in unweathered granite from the overtopping of a rock-cut dam spillway by small-moderate floods (~100–1,500 m3 s−1). The amount of erosion demonstrates no relationship with flood magnitude or bedload availability. Instead, structural pattern of the bedrock through faults and joints appears to be the primary control on landscape change. These discontinuities facilitate rapid erosion (>270 m headward retreat; ~100 m incision; and ~160 m widening over 6 years) principally through fluvial plucking and block topple. The example demonstrates the potential for extremely rapid transient bedrock erosion even when rocks are mechanically strong and flood discharges are moderate. These observations are relevant to perceived models of gorge formation and knickpoint retreat

    Progressive incision of the Channeled Scablands by outburst floods

    No full text
    The surfaces of Earth and Mars contain large bedrock canyons that were carved by catastrophic outburst floods. Reconstructing the magnitude of these canyon-forming floods is essential for understanding the ways in which floods modify planetary surfaces, the hydrology of early Mars and abrupt changes in climate. Flood discharges are often estimated by assuming that the floods filled the canyons to their brims with water; however, an alternative hypothesis is that canyon morphology adjusts during incision such that bed shear stresses exceed the threshold for erosion by a small amount. Here we show that accounting for erosion thresholds during canyon incision results in near-constant discharges that are five- to ten-fold smaller than full-to-the-brim estimates for Moses Coulee, a canyon in the Channeled Scablands, which was carved during the Pleistocene by the catastrophic Missoula floods in eastern Washington, USA. The predicted discharges are consistent with flow-depth indicators from gravel bars within the canyon. In contrast, under the assumption that floods filled canyons to their brims, a large and monotonic increase in flood discharge is predicted as the canyon was progressively incised, which is at odds with the discharges expected for floods originating from glacial lake outbursts. These findings suggest that flood-carved landscapes in fractured rock might evolve to a threshold state for bedrock erosion, thus implying much lower flood discharges than previously thought

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η|<0.8 and 0.15 GeV/c<pT<10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from sNN=2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    No full text
    Abstract Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s \sqrt{s} s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pT) of 0.2 GeV/c and up to pT = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pT range 0.5 &lt; pT&lt; 26 GeV/c at sNN \sqrt{s_{\textrm{NN}}} s NN = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pT dependence is observed in pp collisions, where the yield of high-pT electrons increases faster as a function of multiplicity than the one of low-pT electrons. The measurement in p-Pb collisions shows no pT dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.</jats:p

    Higher-order correlations between different moments of two flow amplitudes in Pb-Pb collisions at √sNN=5.02 TeV

    No full text

    Measurement of the Lifetime and <math display="inline"><mi mathvariant="normal">Λ</mi></math> Separation Energy of <math display="inline"><mmultiscripts><mrow><mi mathvariant="normal">H</mi></mrow><mprescripts/><mrow><mi mathvariant="normal">Λ</mi></mrow><mn>3</mn></mmultiscripts></math>

    No full text
    International audienceThe most precise measurements to date of the HΛ3 lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at sNN=5.02  TeV collected by ALICE at the LHC. The HΛ3 is reconstructed via its charged two-body mesonic decay channel (HΛ3→He3+π- and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and BΛ=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the HΛ3 structure is consistent with a weakly bound system
    corecore