3,192 research outputs found
Hydrogen effects on nanomechanical behavior of additively manufactured 316L stainless steels
Additive manufacturing (AM) has received considerable attention in recent years due to its ability to produce complex engineering components with reduced cost and waste, which simply cannot be made with conventional manufacturing processes. It has been reported that AM 316L austenitic stainless steel (SS) has excellent mechanical properties and possibly even breaks the strength-ductility trade-off. For practical industrial application, it is necessary to investigate the AM steel\u27s resistance to hydrogen embrittlement which is unavoidable in most strucral applications. In this work, we explore the hydrogen effects on nanomechanical responses of AM 316L SS (such as hardness, strain rate sensitivity, activation volume). The obtained results will be compared with those of conventional 316L SS and discussed in terms of hydrogen effect on plastic deformation and microstructure.
Please click Additional Files below to see the full abstract
Fabrication of a Micro-Fluid Gathering Tool for the Gastrointestinal Juice Sampling Function of a Versatile Capsular Endoscope
This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 ÎĽL using approximately 25.4 ÎĽL of AIBN compound
Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications
Chitosan (CS) is a natural cationic polymer obtained by the partial N-deacetylation of chitin. Chitosan microparticles can be prepared by cross-linking with tripolyphosphate (TPP) via the ionic interaction between positively charged amino groups (CS) and negatively charged counter ions (TPP). This can be controlled by the charge density of CS and TPP, which depend on the pH and ionic strength of the solution. The purpose of this study is to investigate the combined effects of three independent variables (pH, ionic strength and CS: TPP ratio) on three important physico-chemical properties (viscosity, zeta potential and particle size) during the preparation of microparticles. CS: TPP microparticles were prepared using experimental design and equations were generated and used to predict relative viscosity, zeta potential and particle size under different conditions. This gives us the ability to design tuneable CS-TPP microparticles with desired size for specific pharmaceutical or forensic applications e.g. latent fingerprint visualisation
The potential of chitosan-tripolyphosphate microparticles in the visualisation of latent fingermarks
Chitosan (CS) is a cationic polymer with excellent film, gel and particle-forming properties. This polymer has been investigated widely for its potential in the development of food and drug delivery systems and pharmaceutical applications, however it has not generally been considered in forensic applications for example fingerprints (fingermarks). Fingerprints are a very common form of physical evidence. The most commonly used procedure for revealing the ridge pattern is powder dusting, which relies on the mechanical adherence of fingerprint formulation to the fatty components of the skin deposit that are secreted by sweat pores that exist on friction ridges. Cross-linking between oppositely charged molecules can be used to prepare chitosan microparticles. Tripolyphosphate (TPP) is a nontoxic polyanion; it can form particles by ionic interaction between positively charged amino groups of CS and negatively charged counter ions of TPP. In the present study chitosan microparticles (CSMPs) were prepared under four different processing/formulation conditions. The development of latent fingermarks using CSMPs was analysed by using a 23 factorial design, which considered simultaneously three main factors: pH, ionic strength and CS: TPP (v/v) ratio. In this study CS: TPP ratio has the strongest effect on fingerprint quality. The best conditions for fingerprint visualisation were pH 4.8, CS: TPP of 2:1 and 0.2 M of ionic strength in buffer (AB-12)
Rapamycin rejuvenates oral health in aging mice.
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice. Here, we demonstrate that short-term treatment with rapamycin rejuvenates the aged oral cavity of elderly mice, including regeneration of periodontal bone, attenuation of gingival and periodontal bone inflammation, and revertive shift of the oral microbiome toward a more youthful composition. This provides a geroscience strategy to potentially rejuvenate oral health and reverse periodontal disease in the elderly
Two different types of malignant fibrous histiocytomas from pet dogs
We describe 2 cases of malignant fibrous histiocytomas (MFHs) that spontaneously developed in young pet dogs. To classify these tumors, we applied a panel of antibodies (vimentin, desmin, α-SMA, and ED1) and Azan staining for collagen. The MFHs were most consistent with osteoclast-like giant and inflammatory cell types. The first case had positive staining for ED1 and vimentin, and given the osteoclast-like giant cells, calcification sites accompanying peripheral giant cell infiltrates. The latter case, the inflammatory cell type, exhibited a storiform-pleomorphic variant of neoplastic cells, including an ossifying matrix. MFHs are among the most highly aggressive tumors occurring in soft tissue sarcomas in elderly dogs; however, MFHs have been poorly studied from a diagnostic point of view. Herein, we describe the histologic and immunohistologic features of MFHs in detail, thus classifying the subtypes of these tumors
Computing the effective action with the functional renormalization group
The \u201cexact\u201d or \u201cfunctional\u201d renormalization group equation describes the renormalization group flow of the effective average action \u393 k. The ordinary effective action \u393 0 can be obtained by integrating the flow equation from an ultraviolet scale k= \u39b down to k= 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang\u2013Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. \ua9 2016, The Author(s)
- …