98 research outputs found

    Evolution of star formation in the UKIDSS Ultra Deep Survey Field - I. Luminosity functions and cosmic star formation rate out to z = 1.6

    Get PDF
    We present new results on the cosmic star formation history in the Subaru/XMM–Newton Deep Survey (SXDS)–Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope for Astronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to make a selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmic time. We determine photometric redshifts for the sample using 11-band photometry, and use a spectroscopically confirmed subset to fine tune the resultant redshift distribution. We use the maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviate the retrospective corrections ordinarily required. The deep narrow-band data are sensitive to very low star formation rates (SFRs), and allow an accurate evaluation of the faint end slope of the Schechter function, α. We find that α is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose that this limit should be empirically motivated. For this analysis, we base our threshold on the limiting observed equivalent widths of emission lines in the local Universe. We compute the characteristic SFR of galaxies in each redshift slice, and the integrated SFR density, ρSFR. We find our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρSFR ∝ (1 + z)4.58 confirming a steep decline in star formation activity since z ∌ 1.6. Keywords: surveys – galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: star formation – cosmology: observations

    A thermodynamic unification of jamming

    Full text link
    Fragile materials ranging from sand to fire-retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here we quantify jamming via a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the 'fluffiness' of a granular mixture. The thermodynamic model, casted in terms of pressure, temperature and free-volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy avoids the Kauzmann paradox entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure

    c-Jun N-terminal kinase activation has a prognostic implication and is negatively associated with FOXO1 activation in gastric cancer

    Get PDF
    BACKGROUND: Since the biological function of c-Jun N-terminal kinase (JNK) in gastric cancer remains unclear, we investigated the clinical significance of JNK activation and its association with FOXO1 activation. METHODS: Immunohistochemical tissue array analysis of 483 human gastric cancer specimens was performed, and the results of the immunostaining were quantified. The correlation between JNK activation (nuclear staining for pJNK) and clinicopathological features, the proliferation index, prognosis or FOXO1 inactivation (cytoplasmic staining for pFOXO1) was analyzed. The SNU-638 gastric cancer cell line was used for in vitro analysis. RESULTS: Nuclear staining of pJNK was found in 38 % of the gastric carcinomas and was higher in the early stages of pTNM (P < 0.001). pJNK staining negatively correlated with lymphatic invasion (P = 0.034) and positively correlated with intestinal type by Lauren’s classification (P = 0.037), Ki-67-labeling index (P < 0.001), cyclin D1 (P = 0.045), cyclin E (P < 0.001) and pFOXO1 (P < 0.001). JNK activation correlated with a longer patients survival (P =0.008) and patients with a JNK-active and FOXO1-inactive tumor had a higher survival rate than the remainder of the population (P = 0.004). In vitro analysis showed that JNK inhibition by SP600125 in SNU-638 cells decreased cyclin D1 protein expression and increased FOXO1 activation. Further, JNK inhibition markedly suppressed colony formation, which was partially restored by FOXO1 shRNA expression. CONCLUSIONS: Our results indicate that JNK activation may serve as a valuable prognostic factor in gastric cancer, and that it is implicated in gastric tumorigenesis, at least in part, through FOXO1 inhibition

    Structural Analysis of Prolyl Oligopeptidases Using Molecular Docking and Dynamics: Insights into Conformational Changes and Ligand Binding

    Get PDF
    Prolyl oligopeptidase (POP) is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana). Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD) simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in ÎČ-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, ÎČ-propeller pore size was increased by ∌2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Cortisol, cognition and the ageing prefrontal cortex

    Get PDF
    The structural and functional decline of the ageing human brain varies by brain region, cognitive function and individual. The underlying biological mechanisms are poorly understood. One potentially important mechanism is exposure to glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with age in humans, and chronic exposure to high levels is hypothesised to result in cognitive decline via cerebral remodelling. However, studies of GC exposure in humans are scarce and methodological differences confound cross-study comparison. Furthermore, there has been little focus on the effects of GCs on the frontal lobes and key white matter tracts in the ageing brain. This thesis therefore examines relationships among cortisol levels, structural brain measures and cognitive performance in 90 healthy, elderly community-dwelling males from the Lothian Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and evening) and reactive profiles (before and after a cognitive test battery). Structural variables comprised Diffusion Tensor Imaging measures of major brain tracts and a novel manual parcellation method for the frontal lobes. The latter was based on a systematic review of current manual methods in the context of putative function and cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and volumetric accuracy when compared to both single- and multi-atlas parcellation at the lobar level. Cognitive ability was assessed via tests of general cognitive ability, and neuropsychological tests thought to show differential sensitivity to the integrity of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared considerable overlap with general cognitive ability, and cognitive scores correlated most consistently with the volumes of the anterior cingulate. This is discussed in light of the diverse connective profile of the cingulate and a need to integrate information over more diffuse cognitive networks according to proposed de-differentiation or compensation in ageing. Individuals with higher morning, evening or pre-test cortisol levels showed consistently negative relationships with specific regional volumes and tract integrity. Participants whose cortisol levels increased between the start and end of cognitive testing showed selectively larger regional volumes and lower tract diffusivity (correlation magnitudes <.44). The significant relationships between cortisol levels and cognition indicated that flatter diurnal slopes or higher pre-test levels related to poorer test performance. In contrast, higher levels in the morning generally correlated with better scores (correlation magnitudes <.25). Interpretation of all findings was moderated by sensitivity to type I error, given the large number of comparisons conducted. Though there were limited candidates for mediation analysis, cortisol-function relationships were partially mediated by tract integrity (but not sub-regional frontal volumes) for memory and post-error slowing. This thesis offers a novel perspective on the complex interplay among glucocorticoids, cognition and the structure of the ageing brain. The findings suggest some role for cortisol exposure in determining age-related decline in complex cognition, mediated via brain structure

    Venous endothelial injury in central nervous system diseases

    Full text link

    Gene-expression changes in knee-joint tissues with aging and menopause: implications for the joint as an organ

    No full text
    Natalie C Rollick,1 Devin B Lemmex,1 Yohei Ono,1,2 Carol R Reno,1 David A Hart,1 Ian KY Lo,1 Gail M Thornton1,3 1McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada; 2Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; 3Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada Background: When considering the &ldquo;joint as an organ&rdquo;, the tissues in a joint act as complementary components of an organ, and the &ldquo;set point&rdquo; is the cellular activity for homeostasis of the joint tissues. Even in the absence of injury, joint tissues have adaptive responses to processes, like aging and menopause, which result in changes to the set point.Purpose: The purpose of this study in a preclinical model was to investigate age-related and menopause-related changes in knee-joint tissues with the hypothesis that tissues will change in unique ways that reflect their differing contributions to maintaining joint function (as measured by joint laxity) and the differing processes of aging and menopause.Methods: Rabbit knee-joint tissues from three groups were evaluated: young adult (gene expression, n=8; joint laxity, n=7; water content, n=8), aging adult (gene expression, n=6; joint laxity, n=7; water content, n=5), and menopausal adult (gene expression, n=8; joint laxity, n=7; water content, n=8). Surgical menopause was induced with ovariohysterectomy surgery and gene expression was assessed using reverse-transcription quantitative polymerase chain reaction.Results: Aging resulted in changes to 37 of the 150 gene&ndash;tissue combinations evaluated, and menopause resulted in changes to 39 of the 150. Despite the similar number of changes, only eleven changes were the same in both aging and menopause. No differences in joint laxity were detected comparing young adult rabbits with aging adult rabbits or with menopausal adult rabbits.Conclusion: Aging and menopause affected the gene-expression patterns of the tissues of the knee joint differently, suggesting unique changes to the set point of the knee. Interestingly, aging and menopause did not affect knee-joint laxity, suggesting that joint function was maintained, despite changes in gene expression. Taken together, these findings support the theory of the joint as an organ where the tissues of the joint adapt to maintain joint function. Keywords: knee, aging, surgical menopause, joint as an orga
    • 

    corecore