95 research outputs found

    Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Get PDF
    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed

    PRKCA Polymorphism Changes the Neural Basis of Episodic Remembering in Healthy Individuals

    Get PDF
    Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory

    Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration

    Get PDF
    The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration

    The sleep EEG spectrum is a sexually dimorphic marker of general intelligence

    Get PDF
    The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual “EEG fingerprint”. Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like “REM beta tufts” are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep

    Multimodality management and outcomes of brain arterio-venous malformations (AVMs) in children: personal experience and review of the literature, with specific emphasis on age at first AVM bleed.

    Get PDF
    PURPOSE: The purpose of this paper is to study the presentation and analyse the results of multimodality treatment of brain arterio-venous malformations (AVMs) in children at our centre and review age at first AVM rupture in the literature. METHODS: Of 52 patients aged <18 years, 47 with brain AVMs (27 males and 20 females) aged 4-17 years (mean 12.2) were retrospectively reviewed. PubMed search revealed five additional studies including 267 patients where the prevalence of age-related AVMs rupture was analysed. RESULTS: In our study, 37 patients had bled, 9 were symptomatic without haemorrhage and 1 was incidental. Spetzler-Martin score distribution was 5 cases grade I, 18 grade II, 21 grade III and 3 grade IV. Appropriate imaging was performed, either CT/MRI angiogram only (in emergency cases) or catheter angiogram, prior to definitive treatment. There were 40 supratentorial and 7 infratentorial AVMs. Twenty-nine patients had microsurgery alone and 9 patients were treated by radiosurgery only. Three patients were embolised, all followed by radiosurgery, with one requiring surgery too, while 4 patients had combined surgery and radiosurgery. One patient is awaiting radiosurgery while another was not treated. Good outcomes, classified as modified Rankin score (mRS) 0-2 improved significantly after intervention to 89.4% from 38.3% pre-treatment (p value <0.0001). Angiography confirmed 96.6% obliteration after first planned operation. Repeat cerebral angiogram around age 18 was negative in all previously cured patients. Reviewing the literature, 82.0% (95% CI = [77-87]; N = 267) of children diagnosed with brain AVMs (mean age 11.4 ± 0.4) presented with a bleed in the last 22 years. Males significantly outnumbered females (136 vs 84) (p < 0.001). Ninety-five patients underwent surgical intervention alone when compared to other treatment modalities (p < 0.001). CONCLUSIONS: Microsurgical excision of surgically accessible intracranial AVMs remains the primary treatment option with very good outcomes. A significant number of patients' AVMs ruptured around puberty; therefore, understanding the pathophysiology of AVM instability at this age may aid future therapy
    corecore