19 research outputs found

    Analisi tecnico-economica di impianti per la cattura e lo stoccaggio di anidride carbonica con stoccaggio di energia termica

    Get PDF
    L’articolo riporta i risultati di uno studio per valutare tecnicamente ed economicamente l’integrazione tra un impianto supercritico a carbone, modellato sulla base del caso di studio prodotto dai report dell’IEA (Agenzia Internazionale Energia), con un impianto per lo stoccaggio di energia termica. Dopo un’analisi approfondita è stato scelto il sistema di stoccaggio ad oli diatermici. L’abbinamento di un sistema di stoccaggio di energia termica all’impianto CCS (Carbon Capture & Storage) permette di riportare la flessibilità, ossia la velocità di variazione nella produzione di energia elettrica, a livello degli impianti di generazione senza la sezione di cattura dell’anidride carbonica. Inoltre a seguito del calcolo del VAN (Valore Attuale Netto) seguendo i criteri di valutazione indicati dall’IEA, si evidenzia come per alcuni scenari del prezzo di vendita dell’energia elettrica e del carbone l’investimento risulti conveniente

    Financing new power plants ‘CCS Ready’ in China–A case study of Shenzhen city

    Get PDF
    AbstractWe evaluate the benefits of a ‘CCS Ready Hub’ approach, a regional ‘CCS Ready’ strategy, which not only includes a number of new coal-fired power plants but also integrates other existing stationary CO2 emissions sources, potential storage sites and potential transportation opportunities into an overarching simulation model. A dynamic top-down simulation model was built based on economic decision criteria and option pricing theory. The model inputs and assumptions build on spatial sampling and analysis using a geographic information system (GIS) approach, engineering assessment of local projects and outputs of a CCS retrofitting investment evaluation through cost cash flow modelling. A case study of Shenzhen city in the Pearl River Delta area in Guangdong in southern China is presented, based on engineering and cost assessment studies and stakeholder consultations and building on existing geological surveys and infrastructure plans. The simulation results show that financing ‘CCS Ready’ at regional planning level rather than only at the design stage of the individual plant (or project) is preferred since it reduces the overall cost of building integrated CCS systems. On the other hand, we found the value of considering existing stationary CO2 emissions sources in CCS ready design. Therefore, we recommended that making new plants CCS ready or planning a CCS ready hub should consider existing large emissions sources when possible

    An interdisciplinary assessment of climate engineering strategies

    Get PDF
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 280–287, doi:10.1890/130030.Mitigating further anthropogenic changes to the global climate will require reducing greenhouse-gas emissions (“abatement”), or else removing carbon dioxide from the atmosphere and/or diminishing solar input (“climate engineering”). Here, we develop and apply criteria to measure technical, economic, ecological, institutional, and ethical dimensions of, and public acceptance for, climate engineering strategies; provide a relative rating for each dimension; and offer a new interdisciplinary framework for comparing abatement and climate engineering options. While abatement remains the most desirable policy, certain climate engineering strategies, including forest and soil management for carbon sequestration, merit broad-scale application. Other proposed strategies, such as biochar production and geological carbon capture and storage, are rated somewhat lower, but deserve further research and development. Iron fertilization of the oceans and solar radiation management, although cost-effective, received the lowest ratings on most criteria. We conclude that although abatement should remain the central climate-change response, some low-risk, cost-effective climate engineering approaches should be applied as complements. The framework presented here aims to guide and prioritize further research and analysis, leading to improvements in climate engineering strategies.NSF grant #1103575 supported KRMM

    Evaluating CO2 capture ready investment in new-built thermal power plants in China

    Full text link
    The total thermal power capacity has grown by 65GW to over 600GW by the end of 2008 (CEC, 2009). Chinese government, industry and academic stakeholders perceive that China will not mandate new plants to be built with carbon dioxide capture and storage systems in the short term and there is little incentive even to contemplate the first steps needed to fit plants with capture equipment (Reiner et al, 2007). Therefore, we evaluate CO2 Capture Ready (CCR) investment, which would enable thermal power plants to be retrofitted to capture CO2 without unnecessary additional costs when the appropriate policy and /or economic drivers are in place (IEA, 2007). In order to understand the value and investment characteristics of CCR in China, a typical 600MW pulverized-coal fired ultra-supercritical power plant was assessed. Combined with a detailed engineering assessment, we obtained the costs for different CCR scenarios. To analyze CCR investment opportunities, we apply a cash flow model for valuing Capture Options, as developed in Liang et al (2007). Results are obtained by Monte-Carlo simulation, with assumptions based on engineering surveys and the IEA (2007) CCR study, as well as plant performance information and expert estimations on carbon prices, coal prices and electricity prices

    The language of CCS - Definitions, explanations and some frequently asked questions

    Get PDF

    Evaluación de los principales potenciales almacenes geológicos para el secuestro de CO2 en el Perú

    Get PDF
    Evalua los potenciales almacenes geológicos y su relación con el confinamiento y la retención permanente (secuestro) de CO2 en el Perú. Para tal efecto se hace necesario analizar los datos de exploración geológica, de producción de hidrocarburos, de emisiones de gases de efecto invernadero (GEI) disponible. Información que se obtiene de la perforación de exploración de recursos hidrocarburífero de las diferentes cuencas sedimentarias del Perú, los reportes especializados de producción petrolera y gasífera, de generación de GEI, que administran las diferentes entidades estatales relacionadas con la ella como PeruPetro, INGEMMET, MINEM, OSINERGMIN. El análisis y tratamiento de datos se efectuó utilizando herramientas informáticas especializadas, como los paquetes logiciales estadísticos, de administración de datos georreferenciados y de estimaciones de recursos de almacenamiento específicos como: Stata y SPSS 3 en la construcción de la base de datos y su análisis, ArcGIS en la gestión espacial de los datos y la generación de los mapas y CO2-SCREEN en la estimación de volúmenes y tonelajes. En esta investigación también se propone un conjunto de datos, luego de discutir su pertinencia; para ser usados en desarrollar una simulación de un formación acuífera salina peruana de almacenamiento geológico con algún software de modelamiento para períodos de entre 1 000 y 100 000 años. Las estimaciones de la capacidad de almacenamiento de las diferentes formaciones geológicas se hacen de acuerdo a la metodología de USDOE/ NETL, que es una metodología robusta y que se ha convertido en la metodología "oficial" por omisión para estas estimaciones en diferentes partes del mundo donde se han desarrollado estimaciones de recursos de almacenamiento de CO2 (México, Brasil, Sudáfrica, etc.), debido a que los posibles lugares de almacenamiento no están debidamente caracterizados se informa de ellos como una estimación de la capacidad y se emplean simulaciones Montecarlo para considerar las incertidumbres. El tratamiento de los datos y la revisión de la información recopilada nos lleva a generar un conjunto de mapas que conforman el Atlas de Recursos de Almacenamiento de CO2 en el Perú y que es el producto más importante de esta investigación. De los potenciales almacenes geológicos que existen, para los fines de la presente investigación se han evaluado solo los depósitos de petróleo, los depósitos de gas y las formaciones acuíferas salinas. Para los demás, se han esbozado recomendaciones y planteado la necesidad de su futura evaluación detallada. Las más importantes fuentes fijas o estacionarias de CO2 del país: las centrales térmicas, refinerías de petróleo y fábricas de Cemento y cal del Perú; contribuyen con un total de emisiones de 21 201.01 Gg de CO2 cada año. En el dimensionamiento de la capacidad de almacenamiento de las formaciones acuíferas salinas se empleó el muestreo de Montecarlo donde se simula 10,000 veces y se calculan los valores de: 22.8 MGg de CO2 en el P10, 84.5 MGg de CO2 en el P50 y 242.6 MGg de CO2 en el P90 de recursos de almacenamiento de CO2, utilizando el software GoldSim. Estos valores estimados cuando se aplica la regla de Swanson se convierten en 114.2 millones de Gigagramos de CO2. La evaluación de la capacidad total de almacenamiento de los diferentes potenciales reservorios de CO2, nos lleva estimar que los recursos de almacenamiento o secuestro de CO2 en el Perú son del orden de 114.5 millones de Gigagramos de CO2

    Greenhouse Gas - Bury it into Oblivion: Options and Risks of CO2_{2} Capture and Storage

    Get PDF
    About one third of global CO2 emissions are due to fossil-fuelled power plants. Recently, the option of capturing the carbon dioxide produced there and storing it underground has been discussed very controversially. Suitable processes could be ready for large-scale use in about 15 to 20 years. However, there are still considerable gaps in our knowledge before we can answer the question of whether carbon capture and storage can actually be a viable climate protection option. Which are the technologically most efficient processes, how high are the CO2 savings potentials, how great are the safety risks and environmental impacts emanating from CO2 storage facilities, how high are the costs of these technologies? The overarching question is whether the concept of CO2 capture and storage can be integrated into the structure of the energy system and whether it can compete with other CO2 mitigation options (energy efficiency, renewables). In this volume, the current state of knowledge and discussion is reviewed and options for a societal debate - keyword acceptance - and adequate legal framework conditions are developed

    Options for introducing CO2 capture and capture readiness for coal fired power plants in China

    No full text
    China has been building at least 50GW of new coal‐fired power plants every year since 2004. Previous carbon capture and storage (CCS) research has mainly focussed on technology improvements or stakeholder opinion surveys, without picturing the overall concerns and barriers for deploying such technology in China. This thesis therefore explores the engineering and policy requirements to implement CCS and CO2 Capture Ready (CCR) in Chinese coal‐fired power plants, key enablers for future deployment. A preliminary study of the Chinese gasification industry shows there are early opportunities to capture carbon dioxide from gasification plants. However, as power from conventional pulverised coal (PC) accounts for the majority of electricity generated in China, the most promising emission reduction method for China could be through implementation of CCS technology in large PC plants. An investigation of the current PC plant layouts and operating parameters has been carried out during the course of the study. The results show that, in the absence of CCR designs, a large fraction of such new coal power plants built within the next decade could face ‘carbon lock-in’. A site specific system model using ASPEN Plus to demonstrate the possible changes that could be applied to an existing power plant and a retrofit plant is included in the study. A capture ready power plant site selection method has also been developed, to identify possible sites and to aid understanding of the criteria that should be considered when planning a capture ready plant. A case study of a capture ready power plant in Guangdong province, China shows the benefit of regional planning. Finally, the result of the first stakeholder perception survey on making new coal‐fired plants CCR, conducted in early 2010, are presented and analysed. Evidence for a supportive attitude towards CCR could indicate that this may be a route to early commercial demonstration of CCS in China

    Treibhausgas - ab in die Versenkung? Möglichkeiten und Risiken der Abscheidung und Lagerung von CO2

    Get PDF
    Etwa ein Drittel der globalen CO2-Emissionen geht auf das Konto von fossil befeuerten Kraftwerken. In jüngster Zeit wird sehr kontrovers die Option diskutiert, das dort entstehende Kohlendioxid aufzufangen und im Untergrund abzulagern. Geeignete Verfahren könnten in etwa 15 bis 20 Jahren großtechnisch einsatzreif sein. Es bestehen aber noch erhebliche Wissenslücken, bevor man die Frage beantworten kann, ob die Abscheidung und Lagerung von Kohlendioxid tatsächlich eine tragfähige Klimaschutzoption sein kann. Welches sind die technologisch effizientesten Verfahren, wie hoch sind die CO2-Einsparpotenziale, wie groß sind die Sicherheitsrisiken und Umweltauswirkungen, die von den CO2-Lagern ausgehen, wie hoch sind die Kosten dieser Technologien? Übergreifend ist zu fragen, ob das Konzept der CO2-Abscheidung und -Lagerung in die Struktur des Energiesystems integriert werden und es mit anderen CO2-Minderungsoptionen (Energieeffizienz, erneuerbare Energien) konkurrenzfähig sein kann. In diesem Band werden der aktuelle Wissens- und Diskussionsstand aufgearbeitet sowie Optionen für eine gesellschaftliche Debatte – Stichwort Akzeptanz – und adäquate rechtliche Rahmenbedingungen entwickelt
    corecore