23 research outputs found

    Homozygous Deletion of Six Olfactory Receptor Genes in a Subset of Individuals with Beta-Thalassemia

    Get PDF
    Progress in the functional studies of human olfactory receptors has been largely hampered by the lack of a reliable experimental model system. Although transgenic approaches in mice could characterize the function of individual olfactory receptors, the presence of over 300 functional genes in the human genome becomes a daunting task. Thus, the characterization of individuals with a genetic susceptibility to altered olfaction coupled with the absence of particular olfactory receptor genes will allow phenotype/genotype correlations and vindicate the function of specific olfactory receptors with their cognate ligands. We characterized a 118 kb β-globin deletion and found that its 3′ end breakpoint extends to the neighboring olfactory receptor region downstream of the β-globin gene cluster. This deletion encompasses six contiguous olfactory receptor genes (OR51V1, OR52Z1, OR51A1P, OR52A1, OR52A5, and OR52A4) all of which are expressed in the brain. Topology analysis of the encoded proteins from these olfactory receptor genes revealed that OR52Z1, OR52A1, OR52A5, and OR52A4 are predicted to be functional receptors as they display integral characteristics of G-proteins coupled receptors. Individuals homozygous for the 118 kb β-globin deletion are afflicted with β-thalassemia due to a homozygous deletion of the β-globin gene and have no alleles for the above mentioned olfactory receptors genes. This is the first example of a homozygous deletion of olfactory receptor genes in human. Although altered olfaction remains to be ascertained in these individuals, such a study can be carried out in β-thalassemia patients from Malaysia, Indonesia and the Philippines where this mutation is common. Furthermore, OR52A1 contains a γ-globin enhancer, which was previously shown to confer continuous expression of the fetal γ-globin genes. Thus, the hypothesis that β-thalassemia individuals, who are homozygous for the 118 kb deletion, may also have an exacerbation of their anemia due to the deletion of two copies of the γ-globin enhancer element is worthy of consideration

    PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins

    No full text
    The beta-barrel outer membrane proteins constitute one of the two known structural classes of membrane proteins. Whereas there are several different web-based predictors for alpha-helical membrane proteins, currently there is no freely available prediction method for beta-barrel membrane proteins, at least with an acceptable level of accuracy. We present here a web server (PRED-TMBB, http://bioinformatics.biol.uoa.gr/PRED-TMBB) which is capable of predicting the transmembrane strands and the topology of beta-barrel outer membrane proteins of Gram-negative bacteria. The method is based on a Hidden Markov Model, trained according to the Conditional Maximum Likelihood criterion. The model was retrained and the training set now includes 16 non-homologous outer membrane proteins with structures known at atomic resolution. The user may submit one sequence at a time and has the option of choosing between three different decoding methods. The server reports the predicted topology of a given protein, a score indicating the probability of the protein being an outer membrane beta-barrel protein, posterior probabilities for the transmembrane strand prediction and a graphical representation of the assumed position of the transmembrane strands with respect to the lipid bilayer

    A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants

    Get PDF
    The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes

    Identification of bacterial protein O-Oligosaccharyltransferases and their glycoprotein substrates

    Get PDF
    O-glycosylation of proteins in Neisseria meningitidis is catalyzed by PglL, which belongs to a protein family including WaaL O-antigen ligases. We developed two hidden Markov models that identify 31 novel candidate PglL homologs in diverse bacterial species, and describe several conserved sequence and structural features. Most of these genes are adjacent to possible novel target proteins for glycosylation. We show that in the general glycosylation system of N. meningitidis, efficient glycosylation of additional protein substrates requires local structural similarity to the pilin acceptor site. For some Neisserial PglL substrates identified by sensitive analytical approaches, only a small fraction of the total protein pool is modified in the native organism, whereas others are completely glycosylated. Our results show that bacterial protein O-glycosylation is common, and that substrate selection in the general Neisserial system is dominated by recognition of structural homology
    corecore