44 research outputs found

    Completeness of the Coulomb scattering wave functions

    Full text link
    Completeness of the eigenfunctions of a self-adjoint Hamiltonian, which is the basic ingredient of quantum mechanics, plays an important role in nuclear reaction and nuclear structure theory. However, until now, there was no a formal proof of the completeness of the eigenfunctions of the two-body Hamiltonian with the Coulomb interaction. Here we present the first formal proof of the completeness of the two-body Coulomb scattering wave functions for repulsive unscreened Coulomb potential. To prove the completeness we use the Newton's method [R. Newton, J. Math Phys., 1, 319 (1960)]. The proof allows us to claim that the eigenfunctions of the two-body Hamiltonian with the potential given by the sum of the repulsive Coulomb plus short-range (nuclear) potentials also form a complete set. It also allows one to extend the Berggren's approach of modification of the complete set of the eigenfunctions by including the resonances for charged particles. We also demonstrate that the resonant Gamow functions with the Coulomb tail can be regularized using Zel'dovich's regularization method.Comment: 12 pages and 1 figur

    Resonance Theory of Decoherence and Thermalization

    Get PDF
    We present a rigorous analysis of the phenomenon of decoherence for general N−N-level systems coupled to reservoirs. The latter are described by free massless bosonic fields. We apply our general results to the specific cases of the qubit and the quantum register. We compare our results with the explicitly solvable case of systems whose interaction with the environment does not allow for energy exchange (non-demolition, or energy conserving interactions). We suggest a new approach which applies to a wide variety of systems which are not explicitly solvable

    Uniqueness of the ground state in the Feshbach renormalization analysis

    Full text link
    In the operator theoretic renormalization analysis introduced by Bach, Froehlich, and Sigal we prove uniqueness of the ground state.Comment: 10 page

    Solitary Wave Dynamics in an External Potential

    Full text link
    We study the behavior of solitary-wave solutions of some generalized nonlinear Schr\"odinger equations with an external potential. The equations have the feature that in the absence of the external potential, they have solutions describing inertial motions of stable solitary waves. We construct solutions of the equations with a non-vanishing external potential corresponding to initial conditions close to one of these solitary wave solutions and show that, over a large interval of time, they describe a solitary wave whose center of mass motion is a solution of Newton's equations of motion for a point particle in the given external potential, up to small corrections corresponding to radiation damping.Comment: latex2e, 41 pages, 1 figur

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b⃗(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case

    On Spectra of Linearized Operators for Keller-Segel Models of Chemotaxis

    Full text link
    We consider the phenomenon of collapse in the critical Keller-Segel equation (KS) which models chemotactic aggregation of micro-organisms underlying many social activities, e.g. fruiting body development and biofilm formation. Also KS describes the collapse of a gas of self-gravitating Brownian particles. We find the fluctuation spectrum around the collapsing family of steady states for these equations, which is instrumental in derivation of the critical collapse law. To this end we develop a rigorous version of the method of matched asymptotics for the spectral analysis of a class of second order differential operators containing the linearized Keller-Segel operators (and as we argue linearized operators appearing in nonlinear evolution problems). We explain how the results we obtain are used to derive the critical collapse law, as well as for proving its stability.Comment: 22 pages, 1 figur

    Proof of the ionization conjecture in a reduced Hartree-Fock model

    Full text link
    The ionization conjecture for atomic models states that the ionization energy and maximal excess charge are bounded by constants independent of the nuclear charge. We prove this for the Hartree-Fock model without the exchange term.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46574/1/222_2005_Article_BF01245077.pd

    Dynamics of Collective Decoherence and Thermalization

    Full text link
    We analyze the dynamics of N interacting spins (quantum register) collectively coupled to a thermal environment. Each spin experiences the same environment interaction, consisting of an energy conserving and an energy exchange part. We find the decay rates of the reduced density matrix elements in the energy basis. We show that if the spins do not interact among each other, then the fastest decay rates of off-diagonal matrix elements induced by the energy conserving interaction is of order N^2, while that one induced by the energy exchange interaction is of the order N only. Moreover, the diagonal matrix elements approach their limiting values at a rate independent of N. For a general spin system the decay rates depend in a rather complicated (but explicit) way on the size N and the interaction between the spins. Our method is based on a dynamical quantum resonance theory valid for small, fixed values of the couplings. We do not make Markov-, Born- or weak coupling (van Hove) approximations

    Asymptotic stability of breathers in some Hamiltonian networks of weakly coupled oscillators

    Full text link
    We consider a Hamiltonian chain of weakly coupled anharmonic oscillators. It is well known that if the coupling is weak enough then the system admits families of periodic solutions exponentially localized in space (breathers). In this paper we prove asymptotic stability in energy space of such solutions. The proof is based on two steps: first we use canonical perturbation theory to put the system in a suitable normal form in a neighborhood of the breather, second we use dispersion in order to prove asymptotic stability. The main limitation of the result rests in the fact that the nonlinear part of the on site potential is required to have a zero of order 8 at the origin. From a technical point of view the theory differs from that developed for Hamiltonian PDEs due to the fact that the breather is not a relative equilibrium of the system

    On scattering of solitons for the Klein-Gordon equation coupled to a particle

    Full text link
    We establish the long time soliton asymptotics for the translation invariant nonlinear system consisting of the Klein-Gordon equation coupled to a charged relativistic particle. The coupled system has a six dimensional invariant manifold of the soliton solutions. We show that in the large time approximation any finite energy solution, with the initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution of the free Klein-Gordon equation. It is assumed that the charge density satisfies the Wiener condition which is a version of the ``Fermi Golden Rule''. The proof is based on an extension of the general strategy introduced by Soffer and Weinstein, Buslaev and Perelman, and others: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component.Comment: 47 pages, 2 figure
    corecore