658 research outputs found
Temperature dependence of the effective spin-mixing conductance probed with lateral non-local spin valves
We report the temperature dependence of the effective spin-mixing conductance between a normal metal (aluminium, Al) and a magnetic insulator (Y3Fe5O12, YIG). Non-local spin valve devices, using Al as the spin transport channel, were fabricated on top of YIG and SiO2 substrates. By comparing the spin relaxation lengths in the Al channel on the two different substrates, we calculate the effective spin-mixing conductance (Gs) to be 3.3 × 1012 Ω−1m−2 at 293 K for the Al/YIG interface. A decrease of up to 84% in Gs is observed when the temperature (T) is decreased from 293 K to 4.2 K, with Gs scaling with (T /Tc)3/2. The real part of the spin-mixing conductance (Gr ≈ 5.7 × 1013 Ω−1m−2), calculated from the experimentally obtained Gs, is found to be approximately independent of the temperature. We evidence a hitherto unrecognized underestimation of Gr extracted from the modulation of the spin signal by rotating the magnetization direction of YIG with respect to the spin accumulation direction in the Al channel, which is found to be 50 times smaller than the calculated value
The S-matrix of the Faddeev-Reshetikhin Model, Diagonalizability and PT Symmetry
We study the question of diagonalizability of the Hamiltonian for the
Faddeev-Reshetikhin (FR) model in the two particle sector. Although the two
particle S-matrix element for the FR model, which may be relevant for the
quantization of strings on , has been calculated recently
using field theoretic methods, we find that the Hamiltonian for the system in
this sector is not diagonalizable. We trace the difficulty to the fact that the
interaction term in the Hamiltonian violating Lorentz invariance leads to
discontinuity conditions (matching conditions) that cannot be satisfied. We
determine the most general quartic interaction Hamiltonian that can be
diagonalized. This includes the bosonic Thirring model as well as the bosonic
chiral Gross-Neveu model which we find share the same S-matrix. We explain this
by showing, through a Fierz transformation, that these two models are in fact
equivalent. In addition, we find a general quartic interaction Hamiltonian,
violating Lorentz invariance, that can be diagonalized with the same two
particle S-matrix element as calculated by Klose and Zarembo for the FR model.
This family of generalized interaction Hamiltonians is not Hermitian, but is
symmetric. We show that the wave functions for this system are also
symmetric. Thus, the theory is in a unbroken phase which guarantees the
reality of the energy spectrum as well as the unitarity of the S-matrix.Comment: 32 pages, 1 figure; references added, version published in JHE
The algebra of flat currents for the string on AdS_5 x S^5 in the light-cone gauge
We continue the program initiated in hep-th/0411200 and calculate the algebra
of the flat currents for the string on AdS_5 x S^5 background in the light-cone
gauge with kappa-symmetry fixed. We find that the algebra has a closed form and
that the non-ultralocal terms come with a weight factor e^{\phi} that depends
on the radial AdS_5 coordinate. Based on results in two-dimensional sigma
models coupled to gravity via the dilaton field, this suggests that the algebra
of transition matrices in the present case is likely to be unambigous.Comment: 27 pages, references added, version published in JHE
Gauge invariant derivative expansion of the effective action at finite temperature and density and the scalar field in 2+1 dimensions
A method is presented for the computation of the one-loop effective action at
finite temperature and density. The method is based on an expansion in the
number of spatial covariant derivatives. It applies to general background field
configurations with arbitrary internal symmetry group and space-time
dependence. Full invariance under small and large gauge transformations is
preserved without assuming stationary or Abelian fields nor fixing the gauge.
The method is applied to the computation of the effective action of spin zero
particles in 2+1 dimensions at finite temperature and density and in presence
of background gauge fields. The calculation is carried out through second order
in the number of spatial covariant derivatives. Some limiting cases are worked
out.Comment: 34 pages, REVTEX, no figures. Further comments adde
Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid
The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC
Exact Gravitational Shockwaves and Planckian Scattering on Branes
We obtain a solution describing a gravitational shockwave propagating along a
Randall-Sundrum brane. The interest of such a solution is twofold: on the one
hand, it is the first exact solution for a localized source on a
Randall-Sundrum three-brane. On the other hand, one can use it to study forward
scattering at Planckian energies, including the effects of the continuum of
Kaluza-Klein modes. We map out the different regimes for the scattering
obtained by varying the center-of-mass energy and the impact parameter. We also
discuss exact shockwaves in ADD scenarios with compact extra dimensions.Comment: 19 pages, 3 figures. v2: references added, minor improvements and
small errors correcte
The T2K ND280 Off-Axis Pi-Zero Detector
The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the
off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino
experiment. The primary goal for the P{\O}D is to measure the relevant cross
sections for neutrino interactions that generate pi-zero's, especially the
cross section for neutral current pi-zero interactions, which are one of the
dominant sources of background to the electron neutrino appearance signal in
T2K. The P{\O}D is composed of layers of plastic scintillator alternating with
water bags and brass sheets or lead sheets and is one of the first detectors to
use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …