46 research outputs found

    Probing the limit of nuclear existence: Proton emission from 159Re

    Get PDF
    AbstractThe observation of the new nuclide 15975Re84 provides important insights into the evolution of single-particle structure and the mass surface in heavy nuclei beyond the proton drip line. This nuclide, 26 neutrons away from the nearest stable rhenium isotope, was synthesised in the reaction 106Cd(58Ni, p4n) and identified via its proton radioactivity using the ritu gas-filled separator and the great focal-plane spectrometer. Comparisons of the measured proton energy (Ep=1805±20 keV) and decay half-life (t1/2=21±4 μs) with values calculated using the WKB method indicate that the proton is emitted from an h11/2 state. The implications of these results for future experimental investigations into even more proton unbound nuclei using in-flight separation techniques are considered

    High-spin yrast structure of 159Ho

    Get PDF
    An investigation of the yrast structure of the odd-Z 159Ho nucleus to high spin has been performed. The 159Ho nucleus was populated by the reaction 116Cd(48Ca,p4nγ) at a beam energy of 215 MeV, and resulting γ decays were detected by the Gammasphere spectrometer. The h11/2 yrast band has been significantly extended up to Iπ=75/2- (tentatively 79/2-). A lower frequency limit for the second (h11/ 2)2 proton alignment was extracted consistent with the systematics of this alignment frequency, indicating an increased deformation with neutron number in the Ho isotopes. The energy-level splitting between the signature partners in the h11/2 structures of the Ho isotopes and the neighboring N=92 isotones is discussed

    Structure changes in Er160 from low to ultrahigh spin

    Get PDF
    A spectroscopic investigation of the γ decays from excited states in Er160 has been performed in order to study the changing structural properties exhibited from low spin up toward ultrahigh spin (I~60). The nucleus Er160 was populated by the reaction Cd116(Ca48,4nγ) at a beam energy of 215 MeV, and resulting γ decays were studied using the Gammasphere spectrometer. New rotational structures and extensions to existing bands were observed, revealing a diverse range of quasiparticle configurations, which are discussed in terms of the cranked shell model. At spins around 50 there is evidence for oblate states close to the yrast line. Three rotational bands that have the characteristics of strongly deformed triaxial structures are observed, marking a return to collectivity at even higher spin. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations

    Band crossings in Ta166

    Get PDF
    High-spin states in the odd-odd nucleus Ta166 are investigated through the 5n channel of the V51+Sn120 reaction. Four new bands are observed and linked into the previous level scheme. Configurations for the bands are proposed, based on measured alignments and B(M1)/B(E2) transition strength ratios

    Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

    Get PDF
    The quenching of the experimental spectroscopic factor for proton emission from the short-lived d3/2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu

    Diverse collective excitations in 159Er up to high spin

    Get PDF
    A spectroscopic investigation of the γ decays from excited states in 159Er has been performed to study the changing structural properties exhibited as ultrahigh spins (I>60) are approached. The nucleus of 159Er was populated by the reaction 116Cd(48Ca,5nγ) at a beam energy of 215 MeV, and the resulting γ decays were studied using the Gammasphere spectrometer. New rotational bands and extensions to existing sequences were observed, which are discussed in terms of the cranked shell model, revealing a diverse range of quasiparticle configurations. At spins around 50, there is evidence for a change from dominant prolate collective motion at the yrast line to oblate non-collective structures via the mechanism of band termination. A possible strongly deformed triaxial band occurs at these high spins, which indicates collectivity beyond 50. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations

    Rotational structures and the wobbling mode in Ta167

    Get PDF
    Excited states in the neutron-deficient nucleus Ta167 were studied through the Sn120(V51,4n) reaction. Twelve rotational bands have been observed and the relative excitation energy of each sequence is now known owing to the multiple interband connections. Several quasineutron alignments were observed that aided in the quasiparticle assignments of these bands. The resulting interpretation is in line with observations in neighboring nuclei. Trends in the wobbling phonon energy seen in Lu161,163,165,167 and Ta167 are also discussed and particle-rotor model calculations (assuming constant moments of inertia) are found to be inconsistent with the experimental data

    Analogous intruder behavior near Ni, Sn, and Pb isotopes

    Get PDF
    Near shell closures, the presence of unexpected states at low energies provides a critical test of our understanding of the atomic nucleus. New measurements for the N=42 isotones Co2769 and Cu2971, along with recent data and calculations in the Ni isotopes, establish a full set of complementary, deformed, intruder states astride the closed-shell Ni28 isotopes. Nuclei with a one-proton hole or one-proton particle adjacent to Z=28 were populated in β-decay experiments and in multinucleon transfer reactions. A β-decaying isomer, with a 750(250)-ms half-life, has been identified in Co422769. It likely has low spin and accompanies the previously established 7/2- state. Complementary data for the levels of isotonic Cu422971 support the presence of a deformed, ΔJ=1 band built on the proton intruder 7/2- level at 981 keV. These data, together with recent studies of lower-mass Co and Cu isotopes and extensive work near Ni68, support the view that intruder states based on particle-hole excitations accompany all closed proton shells with Z≥28

    Study of the deformation-driving vd5/2 orbital in 6728Ni39 using one-neutron transfer reactions

    Get PDF
    Abstract The ν g 9 / 2 , d 5 / 2 , s 1 / 2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a ( d , p ) -experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial ν g 9 / 2 (1007 keV) and ν d 5 / 2 (2207 keV and 3277 keV) single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the ν d 5 / 2 single-particle strength relative to the ν g 9 / 2 -orbital is concentrated in and shared between the first two observed 5 / 2 + levels. A comparison with extended Shell Model calculations and equivalent (3He, d) studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g 9 / 2 state, but differences are observed for the d 5 / 2 single-particle strength
    corecore