7 research outputs found

    The LOVD3 platform: efficient genome-wide sharing of genetic variants

    Get PDF
    Gene variant databases are the backbone of DNA-based diagnostics. These databases, also called Locus-Specific DataBases (LSDBs), store information on variants in the human genome and the observed phenotypic consequences. The largest collection of public databases uses the free, open-source LOVD software platform. To cope with the current demand for online databases, we have entirely redesigned the LOVD software. LOVD3 is genome-centered and can be used to store summary variant data, as well as full case-level data with information on individuals, phenotypes, screenings, and variants. While built on a standard core, the software is highly flexible and allows personalization to cope with the largely different demands of gene/disease database curators. LOVD3 follows current standards and includes tools to check variant descriptions, generate HTML files of reference sequences, predict the consequences of exon deletions/duplications on the reading frame, and link to genomic views in the different genomes browsers. It includes APIs to collect and submit data. The software is used by about 100 databases, of which 56 public LOVD instances are registered on our website and together contain 1,000,000,000 variant observations in 1,500,000 individuals. 42 LOVD instances share data with the federated LOVD data network containing 3,000,000 unique variants in 23,000 genes. This network can be queried directly, quickly identifying LOVD instances containing relevant information on a searched variant.Molecular Technology and Informatics for Personalised Medicine and Healt

    A Rare Disease Patient Manager

    Get PDF
    ABSTRACT publicado: 6th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB. Salamanca, 28-30 Março 2012The personal health implications behind rare diseases are seldom considered in widespread medical care. The low incidence rate and complex treatment process makes rare disease research an underrated field in the life sciences. However, it is in these particular conditions that the strongest relations between genotypes and phenotypes are identified. The rare disease patient manager, detailed in this manuscript, presents an innovative perspective for a patient-centric portal integrating genetic and medical data. With this strategy, patient’s digital records are transparently integrated and connected to wet-lab genetics research in a seamless working environment. The resulting knowledge base offers multiple data views, geared towards medical staff, with patient treatment and monitoring data; genetics researchers, through a custom locus-specific database; and patients, who for once play an active role in their treatment and rare diseases research

    A Nanopublishing Architecture for Biomedical Data

    No full text

    LOVD v.2.0: The Next Generation in Gene Variant Databases

    No full text
    Molecular Technology and Informatics for Personalised Medicine and Healt

    VarioML framework for comprehensive variation data representation and exchange

    Get PDF
    Background: Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. Results: The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e. g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. Conclusions: VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity

    Dutch genome diagnostic laboratories accelerated and improved variant interpretation and increased accuracy by sharing data

    Get PDF
    Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications. Variant classifications of nearly 100,000 unique variants were catalogued and compared in a centralized MOLGENIS database. Variants classified by more than one center were labeled as "consensus" when classifications agreed, and shared internationally with LOVD and ClinVar. When classifications opposed (LB/B vs. LP/P), they were labeled "conflicting", while other nonconsensus observations were labeled "no consensus". We assessed our classifications using the InterVar software to compare to ACMG 2015 guidelines, showing 99.7% overall consistency with only 0.3% discrepancies. Differences in classifications between Dutch labs or between Dutch labs and ACMG were mainly present in genes with low penetrance or for late onset disorders and highlight limitations of the current 5-tier classification system. The data sharing boosted the quality of DNA diagnostics in Dutch labs, an initiative we hope will be followed internationally. Recently, a positive match with a case from outside our consortium resulted in a more definite disease diagnosis.Molecular Technology and Informatics for Personalised Medicine and Healt
    corecore