2,219 research outputs found

    Empty spaces and the value of symbols: Estonia's 'war of monuments' from another angle

    Get PDF
    Taking as its point of departure the recent heightened discussion surrounding publicly sited monuments in Estonia, this article investigates the issue from the perspective of the country's eastern border city of Narva, focusing especially upon the restoration in 2000 of a 'Swedish Lion' monument to mark the 300th anniversary of Sweden's victory over Russia at the first Battle of Narva. This commemoration is characterised here as a successful local negotiation of a potentially divisive past, as are subsequent commemorations of the Russian conquest of Narva in 1704. A recent proposal to erect a statue of Peter the Great in the city, however, briefly threatened to open a new front in Estonia's ongoing 'war of monuments'. Through a discussion of these episodes, the article seeks to link the Narva case to broader conceptual issues of identity politics, nationalism and post-communist transition

    Optical evidence of surface state suppression in Bi based topological insulators

    Full text link
    A key challenge in condensed matter research is the optimization of topological insulator (TI) compounds for the study and future application of their unique surface states. Truly insulating bulk states would allow the exploitation of predicted surface state properties, such as protection from backscattering, dissipationless spin-polarized currents, and the emergence of novel particles. Towards this end, major progress was recently made with the introduction of highly resistive Bi2_2Te2_2Se, in which surface state conductance and quantum oscillations are observed at low temperatures. Nevertheless, an unresolved and pivotal question remains: while room temperature ARPES studies reveal clear evidence of TI surface states, their observation in transport experiments is limited to low temperatures. A better understanding of this surface state suppression at elevated temperatures is of fundamental interest, and crucial for pushing the boundary of device applications towards room-temperature operation. In this work, we simultaneously measure TI bulk and surface states via temperature dependent optical spectroscopy, in conjunction with transport and ARPES measurements. We find evidence of coherent surface state transport at low temperatures, and propose that phonon mediated coupling between bulk and surface states suppresses surface conductance as temperature rises.Comment: 13 pages, 10 figure

    Continuity and change - The planning and management of long distance walking routes in Scotland

    Get PDF
    In recent years a number of changes have taken place in Scotland in respect of issues of land management, access and the natural environment. These include the creation of Scotland’s first National Parks in 2002 and the introduction of the Land Reform (Scotland) Act 2003, which has enshrined in legislation the principle of responsible access in the countryside. The aim of this study was to consider the implications of these changes for a specific type of recreational land use in Scotland, Long Distance (Walking) Routes (LDRs). Using semi-structured interviews with representatives of a number of agencies and with other individuals closely involved with LDRs, the research considered the extent to which these changes have or may alter the rationale for the provision of LDRs, their funding and their management. The research indicates a need and a willingness to build on existing stakeholder approaches to management with a view to engaging a broader range of communities of interest. The main challenge for those involved with LDRs is how to fund future development of these routes. One aim of a more participatory stakeholder management approach is to help route managers to use public funds to lever funds from other source

    Size-dependent spinodal and miscibility gaps for intercalation in nano-particles

    Full text link
    Using a recently-proposed mathematical model for intercalation dynamics in phase-separating materials [Singh, Ceder, Bazant, Electrochimica Acta 53, 7599 (2008)], we show that the spinodal and miscibility gaps generally shrink as the host particle size decreases to the nano-scale. Our work is motivated by recent experiments on the high-rate Li-ion battery material LiFePO4; this serves as the basis for our examples, but our analysis and conclusions apply to any intercalation material. We describe two general mechanisms for the suppression of phase separation in nano-particles: (i) a classical bulk effect, predicted by the Cahn-Hilliard equation, in which the diffuse phase boundary becomes confined by the particle geometry; and (ii) a novel surface effect, predicted by chemical-potential-dependent reaction kinetics, in which insertion/extraction reactions stabilize composition gradients near surfaces in equilibrium with the local environment. Composition-dependent surface energy and (especially) elastic strain can contribute to these effects but are not required to predict decreased spinodal and miscibility gaps at the nano-scale

    Initial observations of fine plasma structures at the flank magnetopause with the complex plasma analyzer SCA-1 onboard the Interball Tail Probe

    No full text
    International audienceThe fast plasma analyzer EU-1 of the SCA-1 complex plasma spectrometer is installed onboard the Interball Tail Probe (Interball-1). It provides fast three-dimensional measurements of the ion distribution function on the low-spin-rate Prognoz satellite (about 2min). The EU-1 ion spectrometer with virtual aperture consists of two detectors with 16 E/Q narrow-angle analyzers and electrostatic scanners. This configuration allows one to measure the ion distribution function in three dimensions (over 15 energy steps in 50 eV/Q?5.0 keV/Q energy range in 64 directions) in 7.5 s, which makes it independent of the slow rotation speed of the satellite. A description of the instrument and its capabilities is given. We present here the preliminary results of measurements of ions for two cases of the dawn low- and mid-latitude magnetopause crossings. The properties of observed ion structures and their tentative explanation are presented. The 12 September 1995 pass at low latitude at about 90° solar-zenith angle on the dawn side of the magnetosphere is considered in more detail. Dispersive ions are seen at the edge of the magnetopause and at the edges of subsequently observed plasma structures. Changes in ion velocity distribution in plasma structures observed after the first magnetopause crossing suggest that what resembles multiple magnetopause crossings may be plasma blobs penetrating the magnetosphere. Observed variations of plasma parameters near magnetopause structures suggest nonstationary reconnection as the most probable mechanism for observed structures

    Alternative Fuel for Portland Cement Processing

    Get PDF
    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâs production process

    Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes Into Duluth-Superior Harbor

    Get PDF
    In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters

    Flexible patches for mm-wave holography

    Get PDF
    Funding: This work was supported by DSTL (DASA grant ACC6004053). J.B. and A.D.F. acknowledge support from EPSRC (Grant Nos. EP/M508214/1 and EP/L017008/1). A.D.F is supported by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 819346).In this work, we demonstrate, in simulation and experiment, reflection metasurface holograms operating in the millimeter wavelength range.Flexible holographic metasurface patches are the ideal platform to retrofit existing millimeter wavelength equipment to enhance and extendtheir functionality, e.g., for antennas and electromagnetic shielding. We present both a rigid and flexible implementation of the holographic metasurfaces, where the meta-atom is based on a three-layered structure with a gold c-ring as the polarization conversion element.PostprintPeer reviewe
    • …
    corecore