466 research outputs found

    On Surface Waves in a Gibson Half-Space

    Get PDF
    Harmonic Rayleigh-type and transverse surface waves in a half-space of incompressible material with constant density and with shear modulus linearly increasing with depth (Gibson half-space) are discussed. Under certain hypotheses a discrete spectrum yielding polynomial Eigen functions is obtained, a fact which makes the eigenvalue problem more tractable. The dispersion laws are presented and evaluated numerically

    The anisotropy of granular materials

    Get PDF
    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of granular media.Comment: Submitted to PR

    Effect of rolling on dissipation in fault gouges

    Get PDF
    Sliding and rolling are two outstanding deformation modes in granular media. The first one induces frictional dissipation whereas the latter one involves deformation with negligible resistance. Using numerical simulations on two-dimensional shear cells, we investigate the effect of the grain rotation on the energy dissipation and the strength of granular materials under quasistatic shear deformation. Rolling and sliding are quantified in terms of the so-called Cosserat rotations. The observed spontaneous formation of vorticity cells and clusters of rotating bearings may provide an explanation for the long standing heat flow paradox of earthquake dynamics

    Slippery sliding on icy Iapetus

    Get PDF
    Enigmatically, some landslides flow farther than normal frictional resistance allows. Cassini images of Saturn’s icy moon Iapetus reveal a multitude of long-runout landslides that may have been enabled by flash heating along the sliding surface

    Indoor pm2.5 exposure in London's domestic stock: Modeling current and future exposures following energy efficient refurbishment

    Get PDF
    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3m3m-2hr-1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13?g.m-3 decreased to 9?g.m-3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8?g.m-3 (from 28.4 to 9.6?g.m-3) for a typical household member. Also of interest is that a larger reduction of 42.6?g.m-3 (from 60.5 to 17.9?g.m-3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4?g.m-3 for typical household members and 9.8?g.m-3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits

    Indoor PM2.5 exposure in London's domestic stock: Modelling current and future exposures following energy efficient refurbishment

    Get PDF
    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3 m3 m−2 h−1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13 μg m−3 decreased to 9 μg m−3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8 μg m−3 (from 28.4 to 9.6 μg m−3) for a typical household member. Also of interest is that a larger reduction of 42.6 μg m−3 (from 60.5 to 17.9 μg m−3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4 μg m−3 for typical household members and 9.8 μg m−3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits

    ‘Green’ on the ground but not in the air: Pro-environmental attitudes are related to household behaviours but not discretionary air travel

    Get PDF
    The rise in greenhouse gas emissions from air travel could be reduced by individuals voluntarily abstaining from, or reducing, flights for leisure and recreational purposes. In theory, we might expect that people with pro-environmental value orientations and concerns about the risks of climate change, and those who engage in more pro-environmental household behaviours, would also be more likely to abstain from such voluntary air travel, or at least to fly less far. Analysis of two large datasets from the United Kingdom, weighted to be representative of the whole population, tested these associations. Using zero-inflated Poisson regression models, we found that, after accounting for potential confounders, there was no association between individuals’ environmental attitudes, concern over climate change, or their routine pro-environmental household behaviours, and either their propensity to take non-work related flights, or the distances flown by those who do so. These findings contrasted with those for pro-environmental household behaviours, where associations with environmental attitudes and concern were observed. Our results offer little encouragement for policies aiming to reduce discretionary air travel through pro-environmental advocacy, or through ‘spill-over’ from interventions to improve environmental impacts of household routines

    The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources.

    Get PDF
    UNLABELLED: A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5 , with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. PRACTICAL IMPLICATIONS: Population exposure to air pollution is typically evaluated using the outdoor concentration of pollutants and does not account for the fact that people in London spend over 80% of their time indoors. In this article, building simulation is used to model the infiltration of outdoor PM2.5 into the domestic indoor environment for dwellings in a London building stock model, and the results mapped. The results show the variation in relative vulnerability of dwellings to pollution infiltration, as well as an estimated absolute indoor concentration across the Greater London Authority (GLA) scaled by local outdoor levels. The practical application of this work is a better understanding of the modifying effect of the building geometry and envelope design on pollution exposure, and how the London building stock may alter exposure. The results will be used to inform population exposure to PM2.5 in future environmental epidemiological studies

    Phase coexistence in consolidating porous media

    Full text link
    The appearence of the fluid-rich phase in saturated porous media under the effect of an external pressure is investigated. For this purpose we introduce a two field second gradient model allowing the complete description of the phenomenon. We study the coexistence profile between poor and rich fluid phases and we show that for a suitable choice of the parameters non-monotonic interfaces show-up at coexistence

    Characterization of the material response in the granular ratcheting

    Get PDF
    The existence of a very special ratcheting regime has recently been reported in a granular packing subjected to cyclic loading \cite{alonso04}. In this state, the system accumulates a small permanent deformation after each cycle. After a short transient regime, the value of this permanent strain accumulation becomes independent on the number of cycles. We show that a characterization of the material response in this peculiar state is possible in terms of three simple macroscopic variables. They are defined that, they can be easily measured both in the experiments and in the simulations. We have carried out a thorough investigation of the micro- and macro-mechanical factors affecting these variables, by means of Molecular Dynamics simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test boundary conditions with a periodically cycling load were implemented. The effect on the plastic response of the confining pressure, the deviatoric stress and the number of cycles has been investigated. The stiffness of the contacts and friction has been shown to play an important role in the overall response of the system. Specially elucidating is the influence of the particular hysteretical behavior in the stress-strain space on the accumulation of permanent strain and the energy dissipation.Comment: 13 pages, 20 figures. Submitted to PR
    • …
    corecore