
Characterization of the material response in granular ratcheting

R. García-Rojo,* F. Alonso-Marroquín, and H. J. Herrmann
ICP, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

�Received 20 May 2005; published 10 October 2005�

The existence of a very special ratcheting regime has recently been reported in a granular packing subjected
to cyclic loading. In this state, the system accumulates a small permanent deformation after each cycle. The
value of this permanent strain accumulation becomes independent of the number of cycles after a short
transient regime. We show in this paper that a characterization of the material response in this peculiar state is
possible in terms of three simple macroscopic variables. The definition of these variables is such that they can
be easily measured both in the experiments and in the simulations. A thorough investigation of the micro- and
macromechanical factors affecting these variables has been carried out by means of molecular-dynamics
simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test
boundary conditions with periodically varying load were implemented. The effect on the plastic response of the
confining pressure, the deviatoric stress, and the number of cycles has been investigated. The stiffness of the
contacts and friction has been shown to play an important role in the overall response of the system. Especially
illustrative is the influence of the peculiar hysteretical behavior in the stress-strain space on the accumulation
of permanent strain and the energy dissipation.
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I. INTRODUCTION

Brownian motors, quantum ratchets, or molecular pumps
operate under the same principle: The chaos of the micro-
world cannot be avoided, but one can take advantage of it
�2�. Nanoscale ratchet devices have been designed with the
surprising property that they can extract work from the noise
of thermal and quantum fluctuations �3�. Ratcheting is the
mechanism behind molecular motors, which can use the cha-
otic Brownian motion to turn directionless energy into di-
rected motion �4�. These lilliputian motors seem to be re-
sponsible for many biological process, such as mechanical
transport �5� or muscle contraction �6�. Apart from these fas-
cinating machines, the ratchet effect has been used to de-
scribe economical or sociological processes in which the in-
trinsic asymmetry in the system allows us to rectify an
unbiased input �7�. A ratchetlike effect is also the major
cause of material deterioration due to cyclic stress loading
and thermal or mechanical fluctuations �8–10�. Asymmetries
in foundations can produce tilting and eventual collapse of
any structure due to ratcheting �11�. The tower of Pisa is a
well documented case, where the tilt was observed from its
construction in 1173 �12�. Pavement design is another impor-
tant field in which graded soils are used as supportive road-
bed �8,13–15�. The excitations that traffic imposes on the
sublayer produce deformations in the granular material.
These deformations are transmitted to the upper layers of the
pavements, causing its degradation or even its breakage. Cy-
clic loading tests are extensively used in the investigation of
the plastic response of unbound granular matter �13�. In
these experiments, the material is subjected to a certain cy-
clic stress condition mimicking traffic. From a practical point

of view, the main question is whether the material accumu-
lates plastic deformation in each cycle, or whether it adapts
to the excitation reaching a shakedown state. Only materials
in which the excitations shake down should be consequently
used in pavement design.

The use of simple models of granular materials allows the
numerical solution of the dynamics. Discrete element meth-
ods �DEM� such as molecular dynamics �MD� �16–18� and
contact dynamics �CD� �19,20� have been in fact often suc-
cessfully applied to the investigation of the elastoplastic be-
havior of granular matter. Especially interesting from the
physical point of view is how the contact model affects the
overall response �21,22�. Recent MD results have shown the
key role that sliding plays on the plastic deformation of a
granular packing subjected to cyclic loading, and the exis-
tence of a range of values of the excitations for which a
simple viscoelastic model of disks subjected to cyclic load-
ing attains shakedown �1,23�. Beyond the shakedown limit,
two other possible responses have also been identified: For
very high loads, the material accumulates deformations at a
relatively high constant rate, leading to an incremental col-
lapse of the structure; for moderate loading intensities, the
system undergoes an adaptation process in which the accu-
mulation of deformation gradually decreases to a very low
constant value. This post-compaction is associated with a
relaxation of the dissipated energy per cycle, which progres-
sively decreases to a constant value dependent on the im-
posed loading. In this final stage, there is a small but persis-
tent accumulation of permanent strain, associated with a
periodic behavior of the sliding contacts, which is called the
ratcheting regime �1�.

Due to the nonlineality and the irreversibility of the be-
havior, cyclic loading is a rather complicated problem from
the theoretical point of view. Elastoplastic and hypoplastic
theories can account for the change in the incremental stiff-
ness during loading and unloading phases, only if basic
modifications are undertaken �24,25�. In the case of elasto-
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plasticity, the overall plastic behavior in the loading-
unloading is obtained as the result of a combination of sev-
eral yield surfaces �26�. In the hypoplastic theory, the
intergranular strain is introduced to take into account the
dependence of the response on the deformation history �27�.
Interestingly, a point of convergence of both theories has
been established by the bounding surface elastoplasticity
�28�. This theory introduces a tiny elastic nucleus changing
with the deformation, and describe the hysteresis by means
of internal variables taking into account the evolution of the
microstructure. The characterization of such internal vari-
ables has been traditionally done using structure tensors,
measuring the fabric properties of the contact network �29�.
There is numerical evidence that a single fabric tensor, mea-
suring the anisotropy of the contact network, can be used to
characterize the resilient response �30�. But the description
of the plastic deformation requires taking into account the
inherent decomposition of the contact network in sliding and
nonsliding contacts �31�. The role of kinematic modes such
as sliding and rolling has also been investigated to some
extent for monotonic deformation, but not for cyclic loading
�16,32,33�.

The final aim of this paper is the characterization of the
ratcheting response of a granular packing under cyclic load-
ing. For this purpose, three macroscopic variables will be
introduced. A simple DEM model will then be used to inves-
tigate the dependence of the material response on different
macroscopic and microscopic variables. From this investiga-
tion, we have found that our simple model is able to repro-
duce several behaviors observed in the experience, and mi-
croscopically justifies the use of popular empirical laws, such
as the k-� model. The main parameters of our model and the
details of the MD simulations are presented in Sec. II. The
ratcheting regime resulting in the biaxial test is described in
Sec. III. In Sec. IV, we decompose the strain response in its
permanent and resilient components. We continue with an
analysis of hysteresis in the plastic response, establishing in
Sec. V a direct relation between the particular shape of the
stress-strain cycle and the dissipated energy per cycle. From
this relationship, it will be easy to explain the observed de-
pendence of the dissipated energy per cycle on the deviatoric
stress. Results on the permanent strain and the resilient pa-
rameters are presented for the different cases studied in Secs.
VI and VII. The approach proposed here is basically empiri-
cal. The resilient parameters will be therefore conveniently
defined in terms of the recoverable deformation, as is usually
done by experimentalists �34�. The dependence on the im-
posed stress is investigated, and the results are compared to
predictions of resilient response models �35–38�. The influ-
ence of the friction and the stiffness at the contacts, main
micromechanical parameters of the model, will also be de-
termined. We finish in Sec. VIII with a discussion of the
main conclusions of this work.

II. MODEL

In our viscoelastic 2D model, the grains are modeled by
soft disks. The deformation that two grains suffer during the
interaction is reproduced by allowing that the disks overlap.

During the overlapping, a certain force fc is exerted at the
contact point. This force can be decomposed in the following
parts:

f�c = f�e + f�v, �1�

where f�e and f�v are the elastic and the viscous contribution,
respectively. The elastic part of the contact force is also de-
composed as

f e = f n
en̂c + f t

et̂c. �2�

The unit normal vector n̂c points in the direction of the vector
connecting the center of mass of the two disks. The tangen-
tial vector t̂c is perpendicular to n̂c. The normal elastic force
is calculated as

f n
e = − knA/Lc, �3�

where kn is the normal stiffness, A is the overlapping area,
and Lc is a characteristic length of the contact. Our choice is
Lc=Ri+Rj. This normalization is necessary to be consistent
in the units of force.

In our simulations, we will assume Coulomb friction. This
model introduces a static and a sliding tangential force, Fs
=�sFn and Fd=�dFn, respectively, in terms of the static, �s,
and dynamic, �d, friction coefficients. Since the coefficients
satisfy the relation �d��s, there is a nonsmooth transition
from the nonsliding to the sliding condition, which cannot be
captured by the molecular-dynamics scheme. A regulariza-
tion process is usually assumed implying that �s=�d=� in
order to overcome this drawback and implement coulomb
friction in DEM quasistatic simulations �53�.

At each contact, the force is calculated using an extension
of the method proposed by Cundall-Strack �39�. This is a
well established simple model suitable for the simulation of
quasistatic deformation of granular materials �52�. An elastic
force proportional to the elastic displacement is included at
each contact,

f t
e = − kt�xt

e, �4�

where kt is the tangential stiffness. The elastic displacement
�xt is calculated as the time integral of the tangential veloc-
ity of the contact during the time where the elastic condition
�f t

e���f n
e is satisfied. The sliding condition is imposed,

keeping this force constant when �f t
e�=�f n

e. The straightfor-
ward calculation of this elastic displacement is given by the
time integral starting at the beginning of the contact,

�xt
e = �

0

t

vt
c�t�����f n

e − �f t
e��dt�, �5�

where � is the Heaviside step function and v� t
c denotes the

tangential component of the relative velocity v�c at the con-
tact,

v�c = v� i − v� j + �� i � R� i − �� j � R� j . �6�

Here v� i is the velocity and �� i is the angular velocity of the

particles in contact. The branch vector R� i connects the center
of mass of particle i to the point of application of the contact
force. Replacing Eqs. �3� and �4� into Eq. �2�, one obtains
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f� e = − kn
A

Lc
n̂c − kt�xt

et̂c. �7�

Damping forces are included in order to allow rapid re-
laxation during the preparation of the sample, and to reduce
the acoustic waves produced during the loading. These
forces are calculated as

f�v = − m��nvn
cn̂c + �tvt

ct̂c� , �8�

where m= �1/mi+1/mj�−1 is the effective mass of the disks
in contact. n̂c and t̂ c are the normal and tangential unit vec-
tors defined before, and �n and �t are the coefficients of
viscosity. These forces introduce time-dependent effects dur-
ing the loading. However, these effects can be arbitrarily
reduced by increasing the loading time, as corresponds to the
quasistatic approximation.

The interaction of the disks with the walls is modeled by
using a simple viscoelastic force: First, we allow the disks to
penetrate the walls. Then we include a force

f�b = − �kn	 + �bm
vb�n� , �9�

where 	 is the penetration length of the disk, n� is the unit
normal vector to the wall, and vb is the relative velocity of
the disk with respect to the wall.

The evolution of the position x�i and the orientation �i of
the particle i is governed by the equations of motion

mix�̈i = �
c

f� i
c + �

b

f� i
b,

Ii�̈i = �
c

R� i
c � f� i

c + �
b

R� i
b � f� i

b. �10�

Here mi and Ii are the mass and moment of inertia of the
disk. The first sum goes over all those particles in contact
with this particle, the second one over all the contacts of i
with the walls. The interparticle contact forces are given by
replacing Eqs. �7� and �8� in Eq. �1�.

We use a fifth-order Gear predictor-corrector method for
solving the equation of motion �40�. This algorithm consists
of three steps. The first step predicts position and velocity of
the particles by means of a Taylor expansion. The second
step calculates the forces as a function of the predicted po-
sitions and velocities. The third step corrects the positions
and velocities in order to optimize the stability of the algo-
rithm. This method is much more efficient than the simple
Euler approach or the Runge-Kutta method, especially for
cyclic loading, where very high accuracy is required.

The relevant contact parameters of this model are the nor-
mal stiffness at the contacts kn, the ratio of tangential and
normal stiffness kt /kn, the normal and tangential damping
frequencies, and the friction coefficient. In the quasistatic
approximation, the results are independent of the frequency
of the cyclic loading and the damping constants. The system
is polydisperse, being that the radii of the grains are Gauss-
ian distributed with a mean value of 0.1L0 and a variance of
0.36, where L0 is the original length of the biaxial box.

III. ONSET OF GRANULAR RATCHETING

In a biaxial experiment, the sample is subjected to a cer-
tain stress state characterized by the principal stresses �1 and
�2. In this case, the stress space is therefore a plane, since the
third component is zero, �3�0. In our simulations, the sys-
tem is first homogeneously compressed with �1=�2. After an
equilibrium state under the pressure P0= ��1+�2� /2=�1 has
been reached, the vertical stress is quasistatically changed,

�2�t� = P0	1 +
��

2

1 − cos�2t

t0
�� , �11�

where t is the simulation time and t0 is the period of the
loading. Note that ��, introduced in the last equation, is the
maximum deviatoric stress measured in units of P0. In our
approximation, it fully characterizes the intensity of the cy-
clic load imposed on the walls.

Deformation appears in the sample due to the imposed
excitations. The strain is the magnitude that characterizes the
accumulation of permanent deformation in the sample.
Among the different practical definitions of strain available
�41�, we have chosen Cauchy’s definition, which is basically
the ratio of the new and the original length of the system. Let
L0

i be the original length of the sample in the principal direc-
tion i �i=x ,y�. The principal component of the strain tensor
�ij on this direction will then be

�i�t� � �ii�t� =
Li�t� − L0

i

L0
i , �12�

where Li is the length of the system in the principal direction
i at the moment of the measurement.

Different loading intensities will be exerted on the sample
by changing the value of ��. The reaction of the system will
be characterized by the deviatoric permanent strain, �, that is
the difference between the strains in the principal directions,

� = �2 − �1. �13�

The typical evolution of the permanent strain during the
cyclic loading is shown in Fig. 1 for our 400-particle model
system. The stress-strain relation consists of hysteresis loops.
This hysteresis produces an accumulation of deviatoric strain
with the number of cycles in addition to a progressive com-
paction, which is not shown there. After some decades of
cycles, the accumulation of permanent deformation becomes
linear, as shown in Fig. 2. This strain rate remains constant
for a very large number of cycles, even when the volume
ratio is very close to the saturation level.

A micromechanical explanation of this linear accumula-
tion of strain is provided by following the dynamics of the
contact network. Although most of the contact forces of this
network satisfy the elastic condition �f t���fn, the strong het-
erogeneities produce a considerable amount of contacts
reaching the sliding condition �f t�=�fn during the compres-
sion. After a number of loading cycles, the contact network
reaches a quasiperiodic behavior. In this regime, a fraction of
the contacts reaches almost periodically the sliding condi-
tion, as shown in the inset of Fig. 2. In each load-unload
transition there is an abrupt reduction of sliding contacts,
which induces the typical discontinuity of the stiffness upon
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reversal of the loading. The load-unload asymmetry at each
sliding contact causes it to slip the same amount and in the
same direction during each loading cycle, leading to an over-
all ratcheting response.

The contact behavior can be observed by embedding two
points at each particle near to the contact area, and following
their translation during each cycle. Their relative displace-
ments are calculated as s� i=s�0−s�rb, where s�0 is the displace-
ment of the embedded point i and s�rb is the rigid-body mo-
tion. This latter is given by the vector connecting the initial

to the final position of the contact point. Note that s�=0� when
the two particles move as a rigid body.

Figure 3 shows the displacement at the contacts during
cycle N=1000. Simulations show that, in this regime, this
displacement field is almost constant after each cycle. There
are two deformation modes resembling the mechanical ratch-
ets. �i� At the sliding contacts the displacement vectors do
not agree, so that there is a systematic slip during each cycle
which also leads to a constant frictional dissipation per cycle.
�ii� At the nonsliding contacts, the displacement vectors are
almost the same for the two particles.

Note from Fig. 3 that the distribution of these ratchets is
not uniform. This kind of strain localization with intense
rolling is typical in sheared granular materials �32,42�. Fun-
damental differences are, however, observed between the cy-
clic loading response and the behavior under monotonic
shear: The translation of each particle during the ratcheting
regime is given by an almost constant displacement per
cycle. On the other hand, the displacement of the particle
during monotonic shear is rather chaotic, well described by
an anomalous diffusion �43�.

Such systematic translation per cycle of the individual
grains in the ratcheting regime has a strong spatial correla-
tion. This is shown in the displacement field of Fig. 4. The
most salient feature here is the formation of vorticity cells,
where a cluster of particles rotates as a whole. These vortici-
ties survive during several hundred cycles, contrary to the
simple shear case, where the vorticities have a very short
lifetime �43�. It is interesting to see, from Figs. 3 and 4, the
kinematic phase separation of the grains: �a� Grains orga-
nized in large vorticity cells, and �b� grains which accommo-
date the cells to make them more compatible with the im-
posed boundary conditions. Since such kinematic modes are
linked with the nonvanishing antisymmetric part of the dis-
placement gradient, the strain tensor is not sufficient to pro-
vide a complete description of this convective motion during
cyclic loading. An appropriate continuum description of
ratcheting would require additional continuum variables tak-

FIG. 1. �Color online� Typical stress-strain relation during cyclic
loading. In the long-time behavior, the response is given by a limit
hysteresis loop. This is shown by the dashed line �the loop here
corresponds to the cycle N=1000�. In this simulation, ��=0.14P0

and P0=10−4kn, where the normal contact stiffness is kn=2
�106 N/m. The damping constants are defined in terms of the
characteristic oscillation period ts=�kn /��2 �in our case, ts

=0.1414�, where � is the density of the grains and � is the mean
radius of the disks composing the sample. The period of oscillation
was taken long enough �t0=105ts� to be sure that we are in the
quasistatic limit.

FIG. 2. �Color online� Cumulative permanent deformation
against the number of cycles �N�. After the post-compaction regime,
the system accumulates permanent strain at a constant strain rate.
This is the so-called ratcheting regime, which emerges as a result of
the periodicity of the sliding contacts. The inset shows precisely the
fraction of the sliding contact vs time in this state.

FIG. 3. �Color online� Displacement at the contacts during one
cycle in the ratcheting. The arrows are proportional to the displace-
ments s of the two material points at the contacts referred to the
contact point. More details are found in the text. The figure is a
snapshot of the simulation of Fig. 1 for N=1000.
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ing into account the vorticity and the gearing between the
contacts. As in the case of the shear band formation, the
Cosserat theory may be a good alternative �44�.

IV. MATERIAL RESPONSE TO CYCLIC LOADING

The existence of an elastic region in the deformation of
granular materials implies that there is a finite region in the
space of stress states around the origin, in which the system
reacts reversibly. Experiments and simulations show, how-
ever, that there is not such pure elastic behavior in a granular
sample. This is not in contradiction with the existence of
shakedown: A granular system may not accumulate any sys-
tematic permanent deformation after one loading cycle, but
will always dissipate some energy because grain interactions
are inherently inelastic. This is possible thanks to the addi-
tional energy supplied to the system by the external loading.
In the particular case of our model, the system reaches a
viscoelastic shakedown. In this limit state, the system dissi-
pates some energy in each cycle and the overall behavior is
not elastic, but the stress-strain cycle is still hysteretic �see
Fig. 5�. Therefore, we differentiate in cyclic loading between
an elastic and a resilient deformation of the sample. The
latter implying that no permanent deformation has been ac-
cumulated after one cycle, while the first also implies the
total absence of hysteresis or memory effects in the response.

It has been recently shown that there is a broad range of
values of �� for which a granular packing reacts to the im-
posed cyclic excitations by slowly deforming in a ratcheting
regime �1,23�. This is a quasiperiodic state, macroscopically
characterized by a constant strain rate and a conservation of
the shape of the stress-strain cycle �see Fig. 1�. At the begin-
ning of the loading process, the system suffers a rearrange-
ment of the sliding contacts, after which they start to behave
periodically within the loading cycles. This post-compaction

process is associated with a relaxation of the strain rate and
also of the dissipated energy per cycle toward a constant
value �23�. This stationary value of the strain rate fully de-
termines the macroscopic plastic response of the system in
the ratcheting regime. At any stage of the experiment, the
strain can therefore be decomposed in two well differentiated
components. The irreversible plastic strain accumulated after
the end of the current cycle, �P, and the recoverable resilient
strain, �R, accumulated along the cycle. In the ratcheting
regime, the strain rate ��� /�N� is approximately constant,
while the latter deformation is well characterized by the re-
silient parameters: resilient modulus MR and the Poisson ra-
tio �. The first parameter, as it appears in Fig. 5, is the ratio
of the maximum deviatoric stress and the corresponding de-
viatoric resilient strain,

MR =
��

�R
, �14�

and quantifies the overall stiffness of the material. The Pois-
son ratio, correspondingly, is the ratio of the horizontal ��1

R�
and axial ��2

R� resilient strains,

� = −
�1

R

�2
R . �15�

It measures how isotropic the deformation is. The definition
of �1

R and �2
R is similar to that in Eq. �12�. They are both

measured at the final stage of the loading, just before unload-
ing starts. Similarly to Eq. �13�, the resilient deviatoric strain
is defined in terms of the resilient strains as � R=�2

R−�1
R.

As a consequence of the quasistatic change of the stresses,
all the relevant time dependence occurs in the system
through the number of cycles N. Figure 6 shows the evolu-
tion of the resilient parameters from the simulations for dif-
ferent deviatoric stresses. For low excitations, the curves
have already reached a plateau after a couple of cycles, im-
plying that the values of � and MR do not apparently change
as the number of cycles increases. In the initial post-

FIG. 4. �Color online� Vortex formation as a consequence of the
ratcheting of the particles. The arrows are proportional to the dis-
placement of the particle after one cycle in the ratcheting regime.
They are plotted at the center of the disks. The cycle is the same as
the one shown in Fig. 3.

FIG. 5. Sketch of the typical material reaction to cyclic loading
in the granular ratcheting. After a post-compaction stage, the system
accumulates permanent strain, �P, at a constant strain rate �� /�N.
The resilient modulus MR is also indicated, as defined in Eq. �14�.
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compaction stage, the system accumulates more deviatoric
strain in the horizontal direction �perpendicular to the direc-
tion on which the cyclic load is applied� than it does in the
final stage. This explains why the Poisson ratio decreases
slightly in the first cycles. The resilient modulus increases,
however, implying a higher stiffness of the system after the
post-compaction. Although the dependence of the final val-
ues on the imposed loading will be discussed in a latter sec-
tion of this paper, it should now be remarked that the number
of cycles needed for the system to reach a steady resilient
response increases as the imposed deviatoric stress is in-
creased. This is clearly observed in case ��=0.35 of the
figure, where even after N=1000 cycles, neither � nor MR
have reached a stationary value.

The peculiar behavior of the system in the ratcheting re-
gime allows for the characterization of the deformation state
of the system through the strain rate and the resilient param-
eters. It is therefore crucial to know the influence of the
confining pressure and the deviatoric stress on these param-
eters. For a complete review of the macroscopic factors af-
fecting the resilient response of a granular material and some
of the models proposed to account for it, we recommend
Refs. �34� and �45�.

To our knowledge, no systematic study has been carried
out up to now elucidating the effect of the microscopic pa-
rameters of the system on the material reaction to cyclic

loading, although they play an important role in it �46,47�.
Combe et al. have identified contact stiffness and friction as
the relevant microscopic parameters in this limit. Intergranu-
lar friction, in particular, appears then to be the dominating
dissipative mechanism. The influence of contact stiffness and
friction on the plastic behavior of a granular packing under-
going ratcheting will also be investigated in the following
sections.

V. HYSTERETICAL BEHAVIOR

History dependence is one of the most essential features
of granular soils. In our simple model, we have shown the
existence of hysteresis both in the shakedown and in the
ratcheting regime. This has forced us to identify two differ-
ent components to the total strain, namely the permanent and
the resilient strain. In any stress cycle, the sliding contacts
behave differently in the loading and unloading phase, lead-
ing to a different stiffness of the material in each of these
phases. In this section, we are interested in the shape of the
cycles and, more specifically, in its relationship with the evo-
lution of the area closed by the strain-stress loop. If we as-
sumed that the deformation in both spatial directions is ap-
proximately the same, this area is the dissipated energy
within the cycle. This energy relaxes during the post-
compaction from an initial high value to a constant value
�23�, reflecting the similarity of the hysteresis loops in the
ratcheting regime �see Fig. 1�. This final value is plotted in
Fig. 7 for different deviatoric stress. A clear power-law be-
havior is observed in a wide range of values above the shake-
down regime.

For the purposes that will be seen next, let us introduce
the following dimensionless variables:

�* = �0 +
�R

2
− � , �16�

FIG. 6. Evolution of the resilient parameters with the number of
cycles N: Resilient modulus MR �top� and Poisson ratio � �bottom�.
The curves show the measures of these magnitudes for different
values of the deviatoric stress ��. The data in the figure correspond
to the simulation of a system with 400 disks, friction coefficient
�=0.1, normal stiffness kn=2�106 N/m, normal damping 1/�n

=4�102ts, and tangential damping 1/�t=8�101ts. The confining
pressure here is P0=6�10−4kn.

FIG. 7. Variation of the area enclosed by the stress-strain cycle
AH, for different values of ��. The area is scaled with the confining
pressure. The dashed line shows the power law y�x3. The data in
the figure correspond to the simulation of a system with friction
coefficient �=0.1, normal stiffness kn=1.6�106 N/m, tangential
stiffness kt=0.33kn, and normal damping 1/�n=4�103ts. The con-
fining pressure is P0=6�10−3kn and the damping coefficient �t

=8ts.
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q* =
��

2
−

�2 − �1

P0
, �17�

where �0 is the permanent strain accumulated up to the end
of the previous cycle we are interested in.

We express in Fig. 8 the limit cycle in Fig. 1 on these new
variables. The best-fit curve to the points in the loading and
unloading are also included. These curves can be expressed
in the scaled variables,

�L
* =

1

MR
q* + BL
���

2
�2

− q*2 , �18�

in the loading, and

�U
* =

1

MR
q* − BU
���

2
�2

− q*2 , �19�

in the unloading phase. BL and BU are positive constants
dependent of the confining pressure, but independent of the
maximum deviatoric stress ����. Note the use of the resilient
parameter MR in the previous expressions. From these for-
mulas, it is then trivial to find the area of the cycle �AH�,

AH = � �2 − �1

P0
d� = � �*dq* = �

−��/2

��/2

��L
* − �U

* �dq*

= �BL + BU�
���

2
�2

−
��

3


−��/2

��/2

=
5�BL + BU�

24
��3.

�20�

Due to our definition of q* and �*, the area AH is in fact
the same as the area enclosed by the stress-strain cycle in
Fig. 1. Our simple calculation explains the power-law behav-
ior in Fig. 7 as a consequence of the nature of the stress-
strain cycles obtained with our model. The explanation
shown here somehow resembles the Rayleigh law for mag-
netization of ferromagnetic materials under low inductions
�48�. Also in this case, the hysteresis energy loss �the area of
the induction versus magnetization loop� behaves also like
the cube of the induction. This power-law in ferromagnetic
materials results from the quadratic dependence of the mag-
netic field on the magnetization. This is analogous to Eqs.

�19� and �18� except for the fact that BL�BU, which reflects
the asymmetry of the loops in the granular ratcheting regime.
It is interesting to observe that the power law is identical to
the one found for the dependence of the strain rate on the
deviatoric strain, as shown in the previous section. In fact,
the closed-loop approximation given by Eqs. �19� and �18� is
not strictly valid in the limit q*→0. The error of this qua-
dratic approximation is of order O��3�, and must be related
to the cubic dependence of the strain accumulation on the
load amplitude. A micromechanical explanation of this
Rayleigh-like law in granular ratcheting is still an open issue.

In the ratcheting regime, the factors fulfill BU�BL. It is
still to be determined which precise effect the behavior of the
sliding contacts has on this observation. A better understand-
ing of the nature of these constants and their dependences on
the model parameters will help us to gain insight into the
overall plastic response of the material.

VI. PERMANENT STRAIN ACCUMULATION

The influence of macromechanical magnitudes and the
microscopic parameters of the model on the accumulation of
permanent strain will be shown in this section. This will be
done by measuring the strain rate in simulations where the
confining pressure, the deviatoric stress, the friction coeffi-
cient, or the stiffness of the contacts is changed, while the
rest of the parameters are kept fixed.

A. Influence of the confining pressure and deviatoric stress

Among all the possible parameters affecting the plastic
behavior of a granular sample, the dependences on the con-
fining pressure and on the deviatoric stress are known to be
the most relevant ones �8�. Since P0 is measured in units of

the normal stiffness, P0= P̂0kn, there are two equivalent
ways, in our model, of studying the effect of the confining
pressure. On the one hand, the normal stiffness of the contact
can be changed while maintaining the ratio kt /kn constant.

On the other hand, the effective pressure P̂0 can be increased.
In order to investigate the importance of the stress history of
the sample, both methods have been used and the results are
shown in Fig. 9�a�. In each of the simulations, the system
was first homogeneously compressed, and then subjected to
cyclic loading. A power law relating the change of strain per
cycle, �� /�N, to P0 /kn is found in a wide range of values.
The best fit of the points leads to the linear behavior,

��

�N
�

P0

kn
. �21�

Dispersion of the data with respect to the empirical law in
Eq. �21� is a direct consequence of the dependence of the
final strain rate on the preparation of the material. Different
confining pressures imply a different post-compaction pro-
cess �23� and therefore a different density of the sample be-
fore cyclic loading. The range of densities involved in Fig.
9�a� goes from solid fractions �=0.82 to �=0.9. Our results
show, in fact, that the strain rate seems to be much more
sensitive to changes in the density than the resilient param-

FIG. 8. Hysteresis stress-strain loop in the new variables �* and
q*. The solid points are the result of the simulation shown in Fig. 1
�N=1000�. The solid lines are the best-fit to the expressions �19�
and �18�. The values of the constants for the theoretical lines are
BL=0.04543 and BU=0.05554.
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eters. This makes the investigation of the strain accumulation
more difficult, limiting also the accuracy of our results on the
relationship between the basic parameters of the system and
the strain rate.

The history dependence of the material is not observed in
part �b� of Fig. 9, where the strain rate accumulation is plot-
ted versus the deviatoric stress for the same initial configu-
ration of disks with solid fraction �=0.85. The measures
indicate a clear potential dependence of the strain rate with
��. Also a potential behavior �with exponent m=2.8±0.1�
has been reported in a polygonal packing �1�.

B. Influence of the micromechanical parameters

The strain-rate behavior as friction changes is slightly
more complicated, if compared to the other parameters stud-
ied. For very low friction, no ratcheting is observed in the
sample. Above a certain value of �, however, a systematic
ratcheting effect can be found. For the parameters used in the
simulation shown in Fig. 10, this limit value is �=0.05. The
strain rate is maximal at this friction, and �as observed in the
figure� the strain rate decreases from this point, as friction is

increased. The explicit dependence on the friction coefficient
follows the power law,

��

�N
� ���−2.0±0.05. �22�

Figure 11 shows the variation of the permanent strain ac-
cumulation rate with the stiffness ratio for different samples
prepared with the same confining pressure P0 and normal
stiffness kn. A power-law behavior with a negative exponent
is found. The best fit of the points of the figure gives

��

�N
� � kt

kn
�−0.3

, �23�

indicating that stronger tangential forces produce a higher
rate of the deformation.

An interpretation of these power-law relations could be
done by exploring the statistical distribution of the contact
forces and its evolution during the loading stage. An impor-
tant parameter is the mobilized angle 
= �f t� / fn, which is
bounded by the sliding condition 
=�. The statistical distri-

FIG. 9. Strain-rate dependence on the confining pressure, P0,
and the deviatoric stress ��. The solid line represents the best-fit
power law. The simulation details are those of Fig. 7. �a� Data
correspond to ��=0.2 and tangential damping 1/�t=8�102ts.

Solid circles were obtained keeping kn constant and varying P̂0. The
open circles, on the contrary, are the result of a series of simulations
in which kn was changed. The solid line on this graph shows a
linear behavior. �b� Data correspond to P0=6�10−3kn and �t=8ts.
The solid line represents the power law y�x3. This is close to the
power-law fitting in polygonal packing, whose exponent lies be-
tween 2.7 and 2.9 �1�.

FIG. 10. Dependence of the strain rate on the friction coefficient
�. The data in the figure correspond to the simulation of a system
normal stiffness kn=1.6�106 N/m, tangential stiffness kt=0.33kn,
normal damping 1/�n=4�103ts, and tangential damping 1/�t

=8ts. The stress conditions are P0=10−3�kn and ��=0.1. The
solid fraction of the initial condition is �=0.93. The solid line
shows the law y=x−2.

FIG. 11. Dependence of the strain rate on the stiffness ratio
kt /kn. Data correspond to the simulation of a system with normal
damping 1/�n=4�103ts, tangential damping 1/�t=8�102ts, solid
fraction �=0.845±0.005, and friction coefficient �=0.1. The stress
conditions are kept constant, P0=10−3�kn and ��=0.2. The solid
line represents the power law y�x−0.3.
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bution of this variable is rather constant except for a peak at
� given by the sliding condition. The value of this peak
depends on the friction coefficient. For small values of �, a
large number of contacts can reach the sliding condition so
that the ratcheting response is expected to be large. For big
values of �, only a few contacts can reach the sliding con-
ditions, which produces a small ratcheting response. A quan-
titative explanation for the power-law dependence will re-
quire us to calculate the evolution of the statistics of the
sliding contacts and the contribution of the sliding to the
global dissipation, but this is beyond the scope of this work.

VII. RESILIENT RESPONSE

Most theoretical models for the resilient response are
based on curve-fitting procedures, using data from biaxial or
triaxial tests. One of the most popular and earlier models is
the so-called k-� model �35�, in which the resilient modulus
is supposed to depend only on the mean stress �,

Mr��� = k� �

�
�n

, �24�

where k and n are material constants, � is a universal con-
stant in units of stress �included for normalization�, and � is
the absolute value of the first invariant of the stress tensor,

� � �tr��̂�� . �25�

Many alternatives to and modifications of this model have
been introduced, which are extensively used in practice
�34,49,50�. One of the main restrictions of the k-� model is
the assumption of a constant Poisson ratio. Several studies
have shown that the Poisson ratio is not a constant in the
granular case, but varies with the applied stresses �36�. An-
other drawback of the model is that the effect of the devia-
toric stresses on the resilient modulus is neglected. A
straightforward modification of the k-� model accounting for
this latter restriction reads �37�

Mr��,��� = k� �

�
�n���

�
�m

. �26�

Note that, with respect to Eq. �24�, a new material constant m
has been introduced. In the simplest approximation, both ex-
ponents are assumed identical, n�m �38�.

The validity of the k-� model will be checked in this
section. Note that, in the case of cyclic loading, given a fixed
��, the dependence of the resilient modulus on � is similar
to its dependence on P0. Results will be shown on the influ-
ence of the confining stress and deviatoric stress on the re-
silient modulus and Poisson ratio. In the latter case, it will be
particularly interesting to investigate the limit of validity of
the common assumption of a constant Poisson ratio for
granular matter.

A. Influence of the confining pressure

Figure 12 indicates that the k-� model is in fact a very
good approximation in the ratcheting regime for a wide
range of pressures of P0. The best fit to the empirical law of

Eq. �24� gives n=0.34±0.02. This value agrees well with the
experimental values in �36�, where results on gravel show a
power law with exponent n=0.31.

Poisson ratio behaves in a completely different way. For
low pressures, it decreases gradually as the pressure becomes
higher. For P0�0.01kn, however, there is a change in the
trend, and � grows fast with P0. This reflects a higher aniso-
tropy of the deviatoric strain in systems compressed under a
high pressure. Nevertheless, our results justify the use of a
constant value of � in a first approximation, for a wide range
of P0, 10−4kn� P0�10−2kn. The most common estimate ��
=0.35�, however, slightly overestimates the values obtained
in most of our simulations.

B. Influence of the deviatoric stress

Two stages are clearly distinguished in the behavior of the
resilient parameters as a function of ��. For low values of
the deviatoric stress, close to the shakedown regime, the re-
silient parameters remain approximately constant. The Pois-
son ratio remains closer to the indicated value ��0.35,
which is the empirical fixed value usually assumed for un-
bound granular matter �36�. This value is shown in Fig. 13
with a solid line. For ���0.1, however, � shows a strong
dependence on the deviatoric stress ��.

A simple empirical polynomial law is proposed in Ref.
�36� for the dependence of � on the ratio of the deviatoric

FIG. 12. Variation of the resilient parameters with the confining
pressure P0: resilient modulus MR �top� and Poisson ratio � �bot-
tom�. The conditions of the simulation are the same as in Fig. 9.
The line in the left plot is the best fit to the k-� model. The solid line
in the right figure is the value �=0.35, an estimation for the Poisson
ratio of granular materials. The different symbols refer to two dif-
ferent methods explained in the text to study the influence of the
confining pressure on the system.
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and volumetric stresses. Although the range of values studied
in this experiment is larger than the one presented here, our
results confirm that the values of the Poisson ratio follow a
second-order polynomial law on ��, where the best-fit curve
is �=0.336�±0.001�−0.208�±0.001���+3.061�±0.001�
�����2. This curve is plotted in the lower part of Fig. 13.

As opposed to the behavior of the Poisson ratio, the resil-
ient modulus decreases as �� increases. The dependence is
also polynomial. In Fig. 13 �top�, the curve y�x�=335.7
−316.8x+229.1x2 is plotted. Note that this result disagrees
with the simplification of the generalized k-� model �m
�n� of Eq. �26�. The general law seems to be a better ap-
proximation in a wide range of values of the deviatoric
stress, where the system shows neither collapse nor shake-
down.

The dependence of the resilient parameters on the devia-
toric stress results from the anisotropy induced in the contact
network for large deviatoric loads. Near failure, a significant
number of contacts are open in a direction perpendicular to
the loading. This results in a smaller stiffness of the material
as shown in the top of Fig. 13. The increase of the Poisson
ratio in the bottom of this figure is a consequence of the
formation of force chains, which enhances the anisotropy
and leads to an increase of the effective Poisson ratio. A finer
description of the effect of these force chains in the resilient
response would require a detailed evaluation of the relation
between the anisotropy of the contact network and the pa-
rameters of the anisotropic elasticity via fabric tensors
�17,31�.

C. Influence of the micromechanical parameters

Figure 14 shows the change of the resilient modulus with
friction. MR grows for small frictions. However, the curve
seems to reach a saturation level for frictions ��0.4.

Changing the ratio of contact stiffness �Fig. 15�, a power-
law dependence of MR is observed for kt /kn�0.1, MR
� �kn /kt�0.28, where the exponent is 0.28±0.03. For stiffness
ratios closer to unity kt /kn�1, the resilient modulus remains
approximately constant or even decreases. The Poisson ratio
also appears to be constant for kt�10−3�kn. Above kt /kn
=0.001, � decreases to values below the reference value �
=0.35. For kt�kn, � starts growing again.

VIII. DISCUSSION AND FINAL REMARKS

A characterization of the material response in the granular
ratcheting has been presented in terms of the strain rate, re-

FIG. 13. Variation of the resilient parameters with the loading
intensity ��. The simulation details are similar to those in Fig. 9
but with kn=2�106 N/m and P0=6�10−4kn. The best-fit curve to
a second-order polynomial is plotted for the values of MR in the top
graph. In the bottom �Poisson ratio�, the solid line corresponds to
the value �=0.35 and the dotted line to the best fit to equation
y�x�=a+bx+cx2 �details are given in the text�.

FIG. 14. Variation of the resilient modulus with the static fric-
tion coefficient �. The conditions of the simulation are the same as
in Fig. 10.

FIG. 15. Influence of the ratio of contact stiffness kt /kn on the
resilient parameters. The details of the simulation are those of Fig.
11. The solid line shows a power law with exponent 0.28 in the top.
The one at the bottom marks the value �=0.35.
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silient modulus, and the Poisson ratio. Studying the depen-
dence of these parameters on the conditions of the biaxial
test �stress configuration� and the main microscopic con-
stants of the sample �friction and contact stiffness�, we con-
firmed the persistence of the granular ratcheting in many
different conditions and systems.

Given a compressed sample subjected to a biaxial test in
which a cyclic loading is switched on, the system adapts to
the new situation accumulating deformation and dissipating
energy at a relatively high rate. After this post-compaction
stage, the dissipated energy, both resilient moduli and the
strain rate, reaches stationary values. The duration of the
adaptation stage basically depends on the deviatoric stress,
and is usually shorter for the resilient moduli than for the
strain rate �23�. If the deviatoric stress is small enough, the
perturbation introduced by the cyclic loading shakes down:
The material adapts to the new situation so that there is no
further accumulation of permanent strain. Above this limit,
the material accumulates a certain amount of strain in each
cycle. If the stress is below the collapse limit, the permanent
strain accumulated after each cycle is constant. This is the
so-called granular ratcheting, which has been described both
experimentally �15,51� and in simulations �1,23�.

Identical repetition of the strain-stress cycles is among the
main characteristics of the granular ratcheting. This period-
icity reflects the weak dependence of the resilient moduli on
the stress history and, in the particular case of cyclic loading,
on the number of applied cycles �8�. In all the simulations, a
steady and stable resilient response is reached after some
initial cycles. This kind of simple behavior is expected as
long as the applied deviatoric stress remains below the col-
lapse limit. Although many factors may influence the plastic
response of the system, there is a simple characterization of
the deformation in the ratcheting regime, in terms of the
strain rate and the resilient moduli. This description takes
advantage of the empirical fact that these magnitudes do not
change in the ratcheting regime. We have investigated both
micromechanical and macromechanical factors influencing
the plastic response of the material, i.e., the dependence on
the number of cycles, static friction, the confining pressure,
the deviatoric stress, and the stiffness.

It was shown that the use of a constant Poisson ratio is a
good approximation in most cases. It seems to be unsuitable,
however, for very high confining pressures, very high devia-
toric stresses, or for low values of the friction coefficient.
The value for � estimated through our simulations would be
slightly below the empirical value 0.35, assumed in many
models of the resilient response of granular materials. This
might be a consequence of the simplicity of the viscoelastic
model, which does not include all the mechanisms involved
in a real biaxial experiment.

MR is a measure of the macroscopical stiffness of the
material. Our results show that it is higher for strongly fric-
tional materials. We also found that although preparing the
sample with a higher confining pressure increases its stiff-
ness, increasing the deviatoric stress reduces the stiffness of
the packing.

Both the strain rate and the resilient modulus MR show a
power-law dependence with the confining pressure and the
ratio of contact stiffness. The power law is similar for both
magnitudes in the case of the confining pressure, but they
have an opposite dependence on kt /kn. The dependence of
MR on the deviatoric stress is a second-order polynomial.
The generalization of the k-� model of Eq. �26� is not suffi-
cient for our system, although Eq. �24� is a good approxima-
tion in many situations.

Reanalyzing our results on the strain rate, we can summa-
rize them in the formal expression

��

�N
�

P0

�2 ����3� kn

kt
�0.3

. �27�

A direct relationship has been shown between this depen-
dence, the power-law behavior of the dissipated energy per
cycles as a function of the deviatoric stress imposed, and the
systematic accumulation of permanent strain. Although the
resilient parameters are not much affected by the stress his-
tory of the material, the strain rate is strongly dependent on
it, therefore complicating the systematic investigation of the
plastic response. In this context, it would be necessary to
measure in more detail the influence of density and polydis-
persity on the possible shakedown of the material. The his-
tory dependence of the plastic response of the system is of
vital importance to technical implications. Future topics for
investigation also include the study of the shakedown-
ratcheting transition as a function of the friction and the
loading intensity. The influence of the system size, the de-
pendence on the damping constants, and the effect of contact
modeling on the material response are subjects of current
work.

ACKNOWLEDGMENTS

The authors would like to thank Professor Deepak Dhar
and Professor Ioannis Vardoulakis for very useful discus-
sions. They also want to acknowledge the EU project Deg-
radation and Instabilities in Geomaterials with Application to
Hazard Mitigation �DIGA� in the framework of the Human
Potential Program, Research Training Networks �HPRN-CT-
2002-00220�.

�1� F. Alonso-Marroquin and H. J. Herrmann, Phys. Rev. Lett. 92,
054301 �2004�.

�2� P. Reimann, Phys. Rep. 361, 57 �2002�.
�3� I. Zapata, R. Bartussek, F. Sols, and P. Hänggi, Phys. Rev. Lett.

77, 2292 �1996�.

�4� J. Howard, Nature �London� 389, 561 �1997�.
�5� K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,

Nature �London� 365, 721 �1993�.
�6� K. Kitamura, K. Tokunaga, M. Iwane, and T. Yanagida, Nature

�London� 397, 129 �1999�.

CHARACTERIZATION OF THE MATERIAL RESPONSE… PHYSICAL REVIEW E 72, 041302 �2005�

041302-11



�7� P. H. Dybvig, Rev. Econ. Stud. 62, 287 �1995�.
�8� F. Lekarp, A. Dawson, and U. Isacsson, J. Transp. Eng. 126,

76 �2000�.
�9� G. Royer-Carfagni, in Novel Approaches in Civil Engineering

�Springer-Verlag, Berlin, 2004�, pp. 177–185.
�10� M. Huang, Z. Suo, Q. Ma, and H. Fujimoto, J. Mater. Res. 15,

1239 �2000�.
�11� G. L. England, T. D. C. M. Tsang, N. Mihajlovic, and J. B.

Bazaz, in Static and Dynamic Properties of Gravelly Soils,
edited by M. D. Evans and R. J. Fragaszy �ASCE, 1995�, pp.
64–76.

�12� J. Burland and C. Viggiani, Riv. Ital. Geotec. 28, 179 �1994�.
�13� F. Lekarp and A. Dawson, Constr. Build. Mater. 12, 9 �1998�.
�14� R. W. Sharp and J. R. Booker, J. Transp. Eng. 110, 1 �1984�.
�15� S. Werkmeister, A. R. Dawson, and F. Wellner, J. Transp. Res.

Board 1757, 75 �2001�.
�16� P. A. Cundall, Ing.-Arch. 59, 148 �1989�.
�17� S. Luding, Int. J. Solids Struct. 41, 5821 �2004�.
�18� M. Oda, K. Iwashita, and H. Kazama, in IUTAM Symposium

on Mechanics of Granular and Porous Materials �Kluwer
Academic Publishers, Dordrecht, 1997�, pp. 353–364.

�19� F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Phys. Rev. Lett.
77, 274 �1996�.

�20� J. J. Moreau, Eur. J. Mech. A/Solids 13, 93 �1994�.
�21� C. Coste, Phys. Rev. E 70, 051302 �2004�.
�22� Z. Farkas, F. Szalai, D. E. Wolf, and T. Vicsek, Phys. Rev. E

65, 022301 �2002�.
�23� R. García-Rojo and H. Herrmann, Granular Matter 7, 109

�2005�.
�24� D. Kolymbas, Introduction to Hypoplasticity �Balkema, Am-

sterdam, 1999�.
�25� F. Tatsuoka, T. Masuda, M. S. A. Siddiquee, and J. Koseki, J.

Geotech. Geoenviron. Eng. 129, 450 �2003�.
�26� Y. Mroz, F. Norris, and G. Zienkiewicz, Geotechnique 31, 451

�1981�.
�27� A. Niemunis and I. Herle, Mech. Cohesive-Frict. Mater. 2, 279

�1996�.
�28� Y. F. Dafalias, J. Eng. Mech. 112, 966 �1986�.
�29� C. Thornton and D. J. Barnes, Acta Mech. 64, 45 �1986�.
�30� S. C. Cowin, Mech. Mater. 4, 137 �1985�.
�31� F. Alonso-Marroquin, S. Luding, H. J. Herrmann, and I. Vard-

oulakis, Phys. Rev. E 71, 051304 �2005�.
�32� J. A. Astrom, H. J. Herrmann, and J. Timonen, Phys. Rev. Lett.

84, 638 �2000�.
�33� M. Lätzel, S. Luding, H. J. Herrmann, D. W. Howell, and R. P.

Behringer, Eur. Phys. J. E 11, 325 �2003�.
�34� F. Lekarp, U. Isacsson, and A. Dawson, J. Transp. Eng. 126,

66 �2000�.
�35� R. G. Hicks and C. L. Monismithi, Highw. Res. Rec. 345, 15

�1971�.
�36� J. J. Allen, Transp. Res. Rec. 510, 1 �1974�.
�37� J. Uzan, Transp. Res. Rec. 1022, 52 �1985�.
�38� W. A. Tam and S. F. Brown, in Urban Traffic Control Work-

shop, 14th ARRB Conference, Australia, 1988, Vol. 14, pp.
155–163.

�39� P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47
�1979�.

�40� M. P. Allen and D. J. Tildesley, Computer Simulation of Liq-
uids �Oxford University Press, Oxford, 1987�, Chap. Appendix
E, pp. 340–342.

�41� C. S. Desai and H. J. Siriwardane, Constitutive Equations for
Engineering Materials �Prentice-Hall, Englewood Cliffs, NJ,
1984�.

�42� I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geome-
chanics �Blakie Academic & Professional, London, 1995�.

�43� F. Radjai and S. Roux, Phys. Rev. Lett. 89, 064302 �2002�.
�44� I. Vardoulakis, Ing.-Arch. 59, 106 �1989�.
�45� E. Taciroglu and D. Hjelmstad, J. Eng. Mech. 128, 969 �2002�.
�46� G. Combe and J.-N. Roux, C. R. Phys. 3, 131 �2002�.
�47� G. Combe and J.-N. Roux, Phys. Rev. Lett. 85, 3628 �2000�.
�48� S. Zapperi, G. Durin, and A. Magni, J. Magn. Magn. Mater.

242-245, 987 �2002�.
�49� K. D. Hjemlstad and E. Taciroglu, J. Eng. Mech. 126, 821

�2000�.
�50� A. Nataatmadjai and Y. L. Tan, J. Transp. Eng. 127, 450

�2001�.
�51� S. Werkmeister, A. R. Dawson, and F. Wellner, Str. Autob. 1,

1 �2004�.
�52� C. Thornton, Geotechnique 50, 43 �2000�.
�53� L. Brendel and S. Dippel, in Physics of Dry Granular Media,

edited by H. J. Herrmann, J.-P. Hovi, and S. Luding �Kluwer
Academic Publishers, Dordrecht, 1998�, p. 313.

GARCÍA-ROJO, ALONSO-MARROQUÍN, AND HERRMANN PHYSICAL REVIEW E 72, 041302 �2005�

041302-12


