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On Surface Waves in a Gibson Half-Space 
I. Vardoulakis 

Assistant Professor, Department of Civil and Mineral Engineering, University of Minnesota, 
Minneapolis, Minnesota 

V. Dougalis 
Assistant Professor, Department of Mathematics, University of Tennessee, Knoxville, Tennessee 

SYNOPSIS Harmonic Rayleigh-type and transverse surface waves in a half-space of incompressible material with constant 
density and with shear modulus linearly increasing with depth (Gibson half-space) are discussed. Under certain hypo
theses a discrete spectrum yielding polynomial eigenfunctions is obtained, a fact which makes the eigenvalue problem 
more tractable. The dispersion laws are presented and evaluated numerically. 

INTRODUCTION 

Surface waves in a nonhomogeneous half-space were first 
investigated by Meissner (1921), who analyzed transverse 
seismic surface waves for quadratic and linear variations 
of the shear modulus and for density varying linearly 
with depth. Stoneley (1934) analyzed Rayleigh-type 
waves in an incompressible half-space of constant 
density and with shear modulus depending linearly on 
depth. Stoneley 1 s solution is given in terms of 
Whittaker functions. As it is recognized by Meissner, 
under certain hypotheses, there exists a discrete 
spectrum with associated polynomial eigenfunctions re
lated to the Laguerre polynomials. As it will be shown 
elsewhere these polynomial solutions are the only 
physically meaningfull ones (layer effect). The poly
nomial formulation followed here makes the eigenvalue 
problem and the formulation of the dispersion law more 
tractable. The present analysis is mainly based on a 
recent paper by Vardoulakis (1981). 

HARMONIC WAVES 

We shall consider the propagation of a plane harmonic 
surface wave through an incompressible Gibson half-space. 
The boundary of the half-space coincides with the xy
plane, with z positive towards the interior of the half
space. The surface wave is travelling through the half
space in the x-direction. 

In a Gibson half-space the shear modulus w is assumed 
to be a linear function of the depth coordinate: 

* W = W
0 

+ WYZ , 

* 

(1) 

where w is the shear modulus at the surface, w is a 
dimensi8nless shear modulus and y is the unit weight of 
the considered body. 

Let 2nL be the wave length and w the circular frequency. 
The dimensionless deoth coordinate sand the phase angle 
¢are defined by the follo~ing equations. 
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s: X [- wt. (2) 

The displacement field and the mean pressure increment 
considered here are of the form: 

u = u (S)sin ¢, v = v (s)sin ¢, w = w (S)cos ¢, (3) 

Llp = P (sl cos ¢. (4) 

Vardoulakis (1981) has recently shown that Ravleigh-:.'c·.ves 
are described by the following displacement field: 

u=-w';v O;w ( 5) 

where (·) 1 = d/ds, C1 , C2 are constants and W(S) satisfies 
the following differential equation 

sW'' + 2(1- s)W 1 
- (2- a)W = 0. (6) 

a is a dimensionless acceleration defined by the relation 

a: 

and g the acceleration of gravity. 

~'yoc.nm'e'"Gc: zvaves are described by the following dis
placement field (Vardoulakis, 1981): 

(7) 

where C3 is a constant and V(s) satisfies the following 
differential equation: 

sV 1 1 + ( 1 - 2 S) V 1 
- ( 1 - a) v : 0 • (9) 



A simple change of variables ~ = 2~ shows that the 
equations (6) and (9) are special cases of the confluent 
hypergeometric equation (cf. Erdelyi et al., Vol. 1, 
1953) which, depending on a, possesses in general non
polynomial solutions. However, as will be shown else
~here, the assumption that the amplitudes~(~). v(~). 
w(~) be square-integrable on [o,oo) (a fact which 
corresponds to finite elastic energy of the traveling 
wave front), leads to polynomial eigenfunctions corre
sponding to integer values of a in (6) and (9) (layer 
effect). Specifically, it is easy to see that if a= 2n 
and a= 2n-1 (n = 1, 2, ... ) the solutions of (6) and 
(9), respectively, are Laguerre polynomials of degree 
n -1 (cf. Erdelyi et al., Vol. 2, 1953): 

(10) 

BOUNDARY CONDITIONS 

The boundary conditions indicating that the half-space 
surface is stress free can be expressed in terms of the 
considered displacement amplitudes v and w (see (5) 1 and 
Vardoulakis, 1981). These boundary conditions are as 
follows: 

11
0

(w''+w) = 0 ; 

11 v' 
0 

0 

(11) 

(12) 

at~=~ . Note that regular behavior is assumed; i.e., 
11 r 0 agd consequently ~o r 0. For the representations 
(g) 3 and (10) 1 of the vert1cal displacement amplitude 
the boundary conditions (11) for Rayleigh-type surface 
waves yield the following characterisitc equation: 

2~ L o (n l + o n-1 o 

(13) 

which is a polynomial equation of degree n in ~ . For 
transverse surface waves equations (12), (8)z an8 (10)2 
yield the characteristic equation 

(14) 

a polynomial equation of degree n-1. As will be shown 
elsewhere (13) and (14) have all their roots positive 
and distinct. 

DISPERSION LAW AND NUMERICAL RESULTS 

The roots of the characteristic equations {13) and (14) 
are denoted by ~!n· ~s it is shown in Vardoulakis 
(1981) if the roots ~On are known then the relation be
tween the dimensionless wave propagation velocity and 
the dimensionless wave length can oe easily deduced. 
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This relation will be the required dispersion law for the 
corresponding surface-wave modes. In (Vardoulakis, 1981) 
the first two pairs of the characteristic relations (13), 
(14) were solved numerically. To extend these results 
and obtain more information about the dispersion law we 
found numerically the roots of (13) for 2 ~ n 2 30 and 
the roots of (14) for 3 < n < 31. We generated the 
coefficients and the values of the Laguerre polynomials 
in (13), (14) using the well-known recursion relations in 
n that these polynomials satisfy. We then found the 
roots by using the root-finding routine ZPOLR of the ISML 
Subroutine Library, based on the Laguerre method for 
finding the roots of a real polynomial. Treating the 
values found by ZPOLR as first approximations we then 
refined the roots using Newton's method. All compu+a
tions were done in double precision on the University of 
Tennessee IBM 370/3031 computer with code compiled by the 
FORTRAN G level compiler. To check our computations, 
since the problem of finding the roots of (13) or (14) is 
of comparable difficulty to that of finding the roots of 
Laguerre polynomials Lg(s), we also compared the values 
of the roots of Lg(s) for 2 ~ n ~ 32 found by our com
puter program to the known tabulated values of these 
roots (cf. Rabinowitz and Weiss, 1959), and found ten
decimal places agreement for all tabulated roots, con
sistent with our stopping criterion for the Newton 
iterations in our program. Fi~. 1, resp. Fig. 2, show 
the largest four roots ~~n <~on< ~~n < ~hn• of (13), 
resp. (14), as functions of n. We also computed the 
least squares straight line fits to the largest two 
roots as functions of n, using the values corresponding 
to 5 < n < 30 for (13) and 6 < n < 31 for (14). With 
three-dec1mal places accuracy-we found: 

for (13): ~~n~2.183n-2.575; ~~n~1.794n-5.879 (15) 

for (14): ~ 1 ~1.934n-3.087; ~ 2 ~1.772n-6.597 . on on (16) 
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Fig. 1 Dispersion law for Rayleigh-type waves 
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Ffg. 2 Dispersion law for transverse waves 

We also observed that for 2 < n < 30, the largest root 
~~n of (13) is allways latger than the largest root of 
tge corresponding Wn(~). The same is true in the case Pf 
(14) with VrL(~) replacing Wn(U. Hence, if t;: 011 =max t:6n 
si~ce z = (s - t: 0 n)L, the wave mode correspond1ng 
to t:on is node-free on the positive z-axis for botn the 
cases of Rayleigh-type and transverse surface waves. 

As a note of computational interest we note that the con
venient asymptotic expression (1) in (Erdelyi et al., 
Vol. 2, 1953, p. 199) for LW((), valid for large nand 
positive L; in a fixed internal [a, b], if substituted in 
(13), resp. (14), yields transcedental equations with 
an infinite number of roots for each n: 

(13): 
sin4Jn_ 1 _ /4(n-2) 3 t:K 
-coslj!n-2 - n-1 (2n-1) t;:-n(n-1) 

(17) 

(14): 
sin1/Jn_ 2 I( 

cosi)Jn- 1 ~(n-1)(n-2) 
(18) 

where 

1/! = n ..'8iit - rr/4 ( 19) 

By taking in both cases the linear least-squares estimate 
for the largest root as an initial approximation for an 
iterative scheme to solve these transcedental equations we 
found that the iterations converged to values that were 
in fairly good agreement with the exact values of the 
largest roots (see Fig. 1 and Fig. 2). Of course, we do 
not recommend this approach for very large n since the 
asymptotic expression cited above is valid for large n 
and bounded x; we anticipate that the largest root will 
vary linearly with n. The last fact along with a more 
accurate asymptotic description of the roots will be 
given elsewhere. 
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