187 research outputs found
Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2
BACKGROUND: Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. RESULTS: Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs) which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75) into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. CONCLUSIONS: To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity
New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites:an open resource
Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.The support and funding of Tres Cantos Open Lab Foundation is gratefully acknowledgedPeer reviewe
Toward the integration of monitoring in the orchestration of across spaces learning situations
Technologies such as augmented Reality (AR), 3D Virtual Worlds (3DVWs) and mobile phones are extending education to other spaces beyond the classroom or the Virtual Learning Environments (VLEs). However, the richness of across-spaces learning situations that could be conducted in all these spaces is hampered by the difficulties (encompassed under the “orchestration” metaphor) that teachers face to carry them out. Monitoring can help in such orchestration, and it has been highly explored in face-to-face and blended learning. Nevertheless, in ubiquitous environments it is usually limited to activities taking place in a specific type of space (e.g., outdoors). In this paper we propose an orchestration system which supports the monitoring of learning situations that may involve web, AR-enabled physical and 3DVW spaces. The proposal was evaluated in three authentic studies, in which a prototype of the system provided monitoring through a web dashboard, an AR app, and a Virtual Globe
Advances in prevention and therapy of neonatal dairy calf diarrhoea : a systematical review with emphasis on colostrum management and fluid therapy
Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota-and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy
Role of GP82 in the Selective Binding to Gastric Mucin during Oral Infection with Trypanosoma cruzi
Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection
'Fit Moms/Mamás Activas' internet-based weight control program with group support to reduce postpartum weight retention in low-income women: study protocol for a randomized controlled trial
Abstract Background High postpartum weight retention is a strong independent risk factor for lifetime obesity, cardiovascular disease, and type 2 diabetes in women. Interventions to promote postpartum weight loss have met with some success but have been limited by high attrition. Internet-based treatment has the potential to overcome this barrier and reduce postpartum weight retention, but no study has evaluated the effects of an internet-based program to prevent high postpartum weight retention in women. Methods/Design Fit Moms/Mamás Activas targets recruitment of 12 Women, Infants and Children (WIC) Supplemental Nutrition Program clinics with a total of 408 adult (>18 years), postpartum (<1 year) women with 14.5 kg or more weight retention or a body mass index of 25.0 kg/m2 or higher. Clinics are matched on size and randomly assigned within county to either a 12-month standard WIC intervention or to a 12-month WIC enhanced plus internet-based weight loss intervention. The intervention includes: monthly face-to-face group sessions; access to a website with weekly lessons, a web diary, instructional videos, and computer-tailored feedback; four weekly text messages; and brief reinforcement from WIC counselors. Participants are assessed at baseline, six months, and 12 months. The primary outcome is weight loss over six and 12 months; secondary outcomes include diet and physical activity behaviors, and psychosocial measures. Discussion Fit Moms/Mamás Activas is the first study to empirically examine the effects of an internet-based treatment program, coupled with monthly group contact at the WIC program, designed to prevent sustained postpartum weight retention in low-income women at high risk for weight gain, obesity, and related comorbidities. Trial registration This trial was registered with Clinicaltrials.gov (identifier: NCT01408147 ) on 29 July 2011
Modelling of the long-term evolution and performance of engineered barrier system
Components of the so-called “multiple-barrier system” from the waste form to the biosphere include a combination of waste containers, engineered barriers, and natural barriers. The Engineered Barrier System (EBS) is crucial for containment and isolation in a radioactive waste disposal system. The number, types, and assigned safety functions of the various engineered barriers depend on the chosen repository concept, the waste form, the radionuclides waste inventory, the selected host rock, and the hydrogeological and geochemical settings of the repository site, among others. EBS properties will evolve with time in response to the thermal, hydraulic, mechanical, radiological, and chemical gradients and interactions between the various constituents of the barriers and the host rock. Therefore, assessing how these properties evolve over long time frames is highly relevant for evaluating the performance of a repository system and safety function evaluations in a safety case. For this purpose, mechanistic numerical models are increasingly used. Such models provide an excellent way for integrating into a coherent framework a scientific understanding of coupled processes and their consequences on different properties of the materials in the EBS. Their development and validation are supported by R&D actions at the European level. For example, within the HORIZON 2020 project BEACON (Bentonite mechanical evolution), the development, test, and validation of numerical models against experimental results have been carried out in order to predict the evolution of the hydromechanical properties of bentonite during the saturation process. Also, in relation to the coupling with mechanics, WP16 MAGIC (chemo Mechanical AGIng of Cementitious materials) of the EURAD Joint Programming Initiative focuses on multi-scale chemo-mechanical modeling of cementitious-based materials that evolve under chemical perturbation. Integration of chemical evolution in models of varying complexity is a major issue tackled in the WP2 ACED (Assessment of Chemical Evolution of ILW and HLW Disposal cells) of EURAD. WP4 DONUT (Development and improvement of numerical methods and tools for modeling coupled processes) of EURAD aims at developing and improving numerical models and tools to integrate more complexity and coupling between processes. The combined progress of those projects at a pan-European level definitively improves the understanding of and the capabilities for assessing the long-term evolution of engineered barrier systems
Decreased Dengue Replication and an Increased Anti-viral Humoral Response with the use of Combined Toll-Like Receptor 3 and 7/8 Agonists in Macaques
Pathogenic versus protective outcomes to Dengue virus (DENV) infection are associated with innate immune function. This study aimed to determine the role of increased TLR3- and TLR7/8-mediated innate signaling after Dengue infection of rhesus macaques in vivo to evaluate its impact on disease and anti-DENV immune responses.TLR3 and TLR7/8 agonists (emulsified in Montanide) were administered subcutaneously to rhesus macaques at 48 hours and 7 days after DENV infection. The Frequency and activation of myeloid dendritic cells, plasmacytoid dendritic cells, and B cells were measured by flow cytometry while the serum levels of 14 different cytokines and chemokines were quantified. Adaptive immune responses were measured by DENV-specific antibody subtype measurements. Results showed that the combined TLR agonists reduced viral replication and induced the development of a proinflammatory reaction, otherwise absent in Dengue infection alone, without any clear signs of exacerbated disease. Specifically, the TLR-induced response was characterized by activation changes in mDC subsets concurrent with higher serum levels of CXCL-10 and IL-1Ra. TLR stimulation also induced higher titers of anti-DENV antibodies and acted to increase the IgG2/IgG1 ratio of anti-DENV to favor the subtype associated with DENV control. We also observed an effect of DENV-mediated suppression of mDC activation consistent with prior in vitro studies.These data show that concurrent TLR3/7/8 activation of the innate immune response after DENV infection in vivo acts to increase antiviral mechanisms via increased inflammatory and humoral responses in rhesus macaques, resulting in decreased viremia and melioration of the infection. These findings underscore an in vivo protective rather than a pathogenic role for combined TLR3/7/8-mediated activation in Dengue infection of rhesus macaques. Our study provides definitive proof-of-concept into the mechanism by which DENV evades immune recognition and activation in vivo
HIV-1 DNA/MVA vaccination reduces the per exposure probability of infection during repeated mucosal SHIV challenges
Historically, HIV vaccines specifically designed to raise cellular immunity resulted in protection from disease progression but not infection when tested in monkeys challenged with a single high virus exposure. An alternative approach, more analogous to human sexual exposures, is to repetitively challenge immunized monkeys with a much lower dose of virus until systemic infection is documented. Using these conditions to mimic human sexual transmission, we found that a multi-protein DNA/MVA HIV-1 vaccine is indeed capable of protecting rhesus monkeys against systemic infection when repeatedly challenged with a highly heterologous immunodeficiency virus (SHIV). Furthermore, this repetitive challenge approach allowed us to calculate per-exposure probability of infection, an observed vaccine efficacy of 64%, and undertake a systematic analysis for correlates of protection based on exposures needed to achieve infection. Therefore, improved non-human primate models for vaccine efficacy can provide novel insight and perhaps renew expectations for positive outcomes of human HIV clinical trials
Dietary t10,c12-CLA but not c9,t11 CLA Reduces Adipocyte Size in the Absence of Changes in the Adipose Renin–Angiotensin System in fa/fa Zucker Rats
In obesity, increased activity of the local renin–angiotensin system (RAS) and enlarged adipocytes with altered adipokine production are linked to the development of obesity-related health problems and cardiovascular disease. Mixtures of conjugated linoleic acid (CLA) isomers have been shown to reduce adipocyte size and alter the production of adipokines. The objective of this study was to investigate the effects of feeding individual CLA isomers on adipocyte size and adipokines associated with the local adipose RAS. Male fa/fa Zucker rats received either (a) control, (b) cis(c)9,trans(t)11-CLA, or (c) t10,c12-CLA diet for 8 weeks. The t10,c12-CLA isomer reduced adipocyte size and increased cell number in epididymal adipose tissue. RT-PCR and Western blot analysis revealed that neither CLA isomer altered mRNA or protein levels of angiotensinogen or AngII receptors in adipose tissue. Likewise, levels of the pro-inflammatory cytokines TNF-α and IL-6 or the anti-inflammatory cytokine IL-10 were unchanged in adipose tissue. Similarly, neither CLA isomer had any effect on phosphorylation nor DNA binding of NF-κB. Our results suggest that although the t10,c12-CLA isomer had beneficial effects on reducing adipocyte size in obese rats, this did not translate into changes in the local adipose RAS or associated adipokines
- …