683 research outputs found

    Galactic civilizations: Population dynamics and interstellar diffusion

    Get PDF
    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found

    Limb-darkening and the structure of the Jovian atmosphere

    Get PDF
    By observing the transit of various cloud features across the Jovian disk, limb-darkening curves were constructed for three regions in the 4.6 to 5.1 mu cm band. Several models currently employed in describing the radiative or dynamical properties of planetary atmospheres are here examined to understand their implications for limb-darkening. The statistical problem of fitting these models to the observed data is reviewed and methods for applying multiple regression analysis are discussed. Analysis of variance techniques are introduced to test the viability of a given physical process as a cause of the observed limb-darkening

    Optical constraints of kerogen from 0.15 to 40 microns: Comparison with meteoritic organics

    Get PDF
    Kerogens are dark, complex organic materials produced on the Earth primarily by geologic processing of biologic materials, but kerogens have chemical and spectral similarities to some classes of highly processed extraterrestrial organic materials. Kerogen-like solids were proposed as constitutents of the very dark reddish surfaces of some asteroids and are also spectrally similar to some carbonaceous organic residues and the Iapetus dark material. Kerogen can thus serve as a useful laboratory analog to very dark, spectrally red extraterrestrial materials; its optical constants can be used to investigate the effects of particle size, void space and mixing of bright and dark components in models of scattering by dark asteroidal, cometary, and satellite surfaces. Measurements of the optical constants of both Type 2 kerogen and of macromolecular organic residue from the Murchison carbonaceous chondrite via transmission and reflection measurements on thin films are reported. The real part of the refractive index, n, is determined by variable incidence-angle reflectance to be 1.60 + or - 0.05 from 0.4 to 2.0 micrometers wavelength. Work extending the measurement of n to longer wavelengths is in progress. The imaginary part of the refractive index, k, shows substantial structure from 0.15 to 40 micrometers. The values are accurate to + or - 20 percent in the UV and IR regions and to + or - 30 percent in the visible. The k values of organic residues were also measured from the Murchison meteorite. Comparison of the kerogen and Murchison data reveals that between 0.15 and 40 microns, Murchison has a similar structure but no bands as sharp as in kerogen, and that the k values for Murchison are significantly higher than those of kerogen

    Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems

    Full text link
    In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/21/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number kk fixing the polarization in the subsystem conservation of SzS_{z} and with respect to the irreducible representations of the Sn\mathbf{S_{n}} group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir Korepin (11 pages, 5 figures

    Shared Responsibilities for Nuclear Disarmament: A Global Debate

    Get PDF
    Presents Sagan's 2009 paper calling for rethinking the balance of responsibilities and the relationship between articles in the Nuclear Non-Proliferation Treaty with seven response papers by international scholars about how to pursue nuclear disarmament

    The f-vector of the descent polytope

    Full text link
    For a positive integer n and a subset S of [n-1], the descent polytope DP_S is the set of points x_1, ..., x_n in the n-dimensional unit cube [0,1]^n such that x_i >= x_{i+1} for i in S and x_i <= x_{i+1} otherwise. First, we express the f-vector of DP_S as a sum over all subsets of [n-1]. Second, we use certain factorizations of the associated word over a two-letter alphabet to describe the f-vector. We show that the f-vector is maximized when the set S is the alternating set {1,3,5, ...}. We derive a generating function for the f-polynomial F_S(t) of DP_S, written as a formal power series in two non-commuting variables with coefficients in Z[t]. We also obtain the generating function for the Ehrhart polynomials of the descent polytopes.Comment: 14 pages; to appear in Discrete & Computational Geometr

    Study on a conceptual model for campus transformation of classical universities in the digital era

    Get PDF
    This article presents a conceptual management model of campus space 4.0 (CS4.0), in which CS4.0 is viewed as a condition for the transformation of classical universities in the digital era. To create this model, we used the systems approach as well as complexity theory, focusing on the ontological, spatial, axiological, social, psychological, and management aspects. The model not only defines the systems status of CS4.0 and describes the three types of properties inherent in CS4.0. This model also explains why, in the digital era, CS4.0 can become the agent of change for a classical university that has had a long history. This model of CS4.0 will not destroy the university’s cultural identity and academic values; rather, it will serve the interests of all groups within the university community. This conceptual model can be the key to understanding one of the possible management strategies for the development of the classical university in the digital network society at the beginning of the Fourth Industrial Revolution

    Isochoric thermal conductivity of solid nitrogen

    Get PDF
    The isochoric thermal conductivity of solid nitrogen has been investigated on four samples of different densities in the temperature interval from 20 K to the onset of melting. In alfa-N2 the isochoric thermal conductivity exhibits a dependence weaker than 1/T; in beta-N2 it increases slightly with temperature. The experimental results are discussed within a model in which the heat is transported by low-frequency phonons or by "diffusive" modes above the mobility boundary. The growth of the thermal conductivity in beta-N2 is attributed to the decreasing "rotational" component of the total thermal resistance, which occurs as the rotational correlations between the neighboring molecules become weaker.Comment: Postscript 12 pages, 3 figures, 1 table. To be published in 200
    corecore