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ABSTRACT

The interstellar diffusion of galactic civilizations is reexamined
by potential theory; both numerical and analytical solutions are
derived for the non-linear partial éifferential equations which
specify a range of relevant models, drawn from blast wave physics,
soil gecience, and, especiall&,-population biology. An essential
featu;e of these models is that, for all civilizations, ?opulation
growth must be limited by the carrying capacity of the environment.
Dispersal is fundamentally a diffusion process; a density~dependent
diffusivity describes -imterstellar emigration. We concentrate on
two models, the firat describing zero populatiom growth (ZPG) and
the second which also ircludes- 1ocal growth and saturatlon of

a planetary population, and for which we f£ind an asymptotic travel-.
-liné wave solution. For both models the colonization wavefront’
expands slowly and umiformly but only the frontier worids are
sources of.furpher expansion. For nonlinear diffusion with growth
and saturation, the colonization wévefrontmfrom the nearest independ-
ently-arisen galactic civilization can have reached the Earth only

if its lifetime exceeds 3 x lO7 yrs. Foxr ZPG the corresponding

number is 1.3 x lOlOyrs.‘ For these numerical results depend on

our choices for the specific emigration rate, the distribution of
colonizable worlds, and, in the second model, the population growth
rate; but the dependences on these parameters is entrancingly weak.
We conclude that the Earth is uncolonized not because interstellar

spacefaring societies are rare, but because.there are too many

worlds to be conquered in the plausible lifetimes of the colonization



phase of nearby galactic civilizations. However, the radar and
television announcement of an emerging technical civilization on
Earth may cause a rapid response by nearby civilizations, presently
motivated to reach our system.directly,-rather than by random

diffusion.



Alexander wept when he heard from
Anaxarchus chat there was an infinice
number of worlds; and his friends

asking him if any accident had befallen
him, he returned this answer: Do you
not think. it a2 matter worthy .of lamenta-
tion that when thers is such z wvast
multitude of them, we have not yet con-
quered one?”

. Platarch, On che Tranquilicy
of the Mind

"Where are they?" is a famous and possibly apo-
cryphal question posad by Enrico Fermi at Los Alszmos in

1l stars} with plamets

the late 1940s. 1In a gaiaxy with 10
apparently abundant and the origin of life seemingly re-
quiring very general cosmic circumstances; with the selec~
tive advantagé\of intelligence and technology obvious and

with billions of years available for evolution, should not
extraterrestrial intelligence be readily detectablse? This
question is most often phrased in its astrophysical contexc
(see, for example, Shklovskii and Sagan, 1966; Dyson, 1968):
should not extraterrestrial civilizations milliions ox, perhaps,

even billions of yvears more advanced then our own be capable

h

of so altering cosmic objects and energy sources that a range
of astrophysical phenomena should exist which canmot be un-
derstood apart- from the. hypothesis of intelligent origin?

ORIGINAL PAGE i
OF POOR QUALITY
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An answer 1s sometimes offered in the negative (Shklovskii,
19876); i.e., the apparent absence of astrcphysical phenomena
of intelligent origin is taken to demonstrate that no .
very adwvanced civilizations exist -- either because thexe
are as vet undetermined impediment; to the evolution of
technical civilizations or because such civilizatieons in-
evitably self-destruct early in their histories. Altermatively,
it can be argued (Sagan, 1974) that there are a wide range of
poorly understood astrophysical phenomena, some involving ex-
tremely high energies, and that (Sagan, 1973a) the manifesta-
tions of very advanced civilizations would be no more apparent
to us than the desién and function of human engineering arti-

facts are to ants crawling upon cheir surfaces. Any astro-

engineering activity that is so

wasteful of energy as to bz observable with our limited“technology
might, by its very nature, be necessarily shortlived. The fact
that we have not yet acauired compelling evidence of such

activity since our rise as a techmological society --  although
there are certainly unéxplained major astrophysical phenomena -~
is mot evidence for the absence of extraterrestrial civiliza-
tions. It may rather be that we wers not looking in the right
placé, with the right instruments at the right time. In any

case, the sole productive approach is the open-minded pursuit of

.

physical explanations of astrophysical phenomena, wnere only a
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serious Zfailure might be evidence for extraterrestrial in-
telligence, but where, in our present ignorance, the possi-

bility remains entirely moot.

However, there is another and more modest side to
the question. Pioneers 10 and 11 and Voyagers 1 and 2 show
that even our infant technical civilization is capable of in-

4 pc yr-l.

terstellar spaceflight, although at velocities 10~
Accordingly, .should not civilizations only a little more ad-
vanced than we be effortlessly plying the spaces between the
stars (Sagan, 1963; Shklovskii and Sagan, 1966)? And, if so,
should we not on Earth today have.some'evidence of interstellar
visits? Occasional serious attempts to deai with this question
always conclude that no persuasive evidence of past visits exists
in human legends or artifacts (Shklovskii and Sagan, 1966; Sagan,
1979); and the most widely touted cl;ims of such wvisits uni-
formly have another and more plausible explanation --' generally
in the area of archaeoclogy or hoax (see, for example, Story,
1976). Likewise, the extraterrestrial hypothesis of UFO0s -~
that is, the contention that we are today being visited --

also exhibits, despite a great deal of study, no persuasive
evidence (Sagan and Page, 1972; Klass, 1974). These discussions
by no means exclude past or present visits to the Earth; they

merely stress the absence of strong evidence for such visits.
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If the presence of extraterrestrial civilizations were
to imply visits to Earth then the absence of such visits would
imply the absence of such civilizations. This argument was
put forward by Hart (1975) who advanced it primarily in the
context of interstellar colonizztion, not exploration. He
argues that even 1f there are energetic difficulties or safety
hazards (for example, the induced cosmic ray flux) to relati-
vistic interstellar spaceflight, thers should be no serious
obstacles to interstellar flight act ~0.1 ¢, in which
case the Galaxy would be traversed in <108 yr. Other
possible objections to large scale interstellar spacefaring
-- such as loss of motivation or self-destruction ~- Hart
argues are unlikely because they must apply to all galactic

civilizations to explain the absence of extraterrestrials om

Eaxrth.

We believe Hart's analysis is flawed on a number of
counts. On the one hand there are universal social impedi-
ments to cosmic imperialism of a sort which should apply to
every galactic civilization. Von Hoermer (1973) has remarkad
that even incerstellar colonization at the speed of light
cannot solve the present human population explosion on the

planer Earth., With our present exponential growth rate of



Yy = 0.02 yr-l and the colonization sphere expanding at the
speed of light, in 500 years the expansion volume will

have a radius of 50 pé with all habitable planets in that
volu?e reaching the Earth's pfesent porulation density;
thereafter the population growth rate must ‘decline. This

is, of course, an extreme example but it demomstrates that
every socisty which is to avoid severe overcrowding and
exhaustion of resources must practice stringent population
control and actively maintain very small values of y. Since,

in the long run, exponentials defeat power laws on everv planet



in the Galaxy -- independent of local biology, evolutionary
history, and social customs -- any analysis of this problem
must consider low values of v and; in the limit, zero popula-.
tion growth (ZPG). A similar point has been made by'Cox (1976) .
One of the objectives of the present paper is to éxplore in
some detail the conéequénces of low wvalues of vy for inter-

stellar colonization.

Another possible social impediment to rapid inter-
stellar colonization, with some conceivable claim to uni-
versality, is immortality (Kevles, 1975). In extrapolating
to advanced technological societies we often seem willing to
imagine daring engineering developments such as interstellar
spaceflight with velocities v = ¢, but make only the most
modest extrapolations in biology or psychology. 1If aging is
due, e.g., to the accumulat?on of somatic mutations, it is.
conceivable that an advanced society will have essentially
eliminated both disease and aging and that the limits to indivi-
dual longevity will then be set by accidents and by events in
geological and stellar evolution. The motivations which we
consider reasonable may seem very unnatural to such a society.

To what extent, for example, is our motive for interstellar



colonization itself a quest for immoertality -- which

would be rendered unnecessary if personal immortality
existed? A population of immortal orgamisms, each leaving

a offspring every year, e§hibits a growth rate identical

to that of a population of organisms in which each lives

for a single %ear and then dies leaving (a + 1) offspring
(Cole, 1954), But if there is a selective advantage for
immortality, the relative number of offspring of immortals
and mortals will adjust themselves in favor of the former.

A society of immortals would be required to practice more
stringent population control than a society of mortals. In
addition, whatever its other charms, interstellar spaceflight
nust pose more serious hazérdé than residence on the home
planet., To the extent that such predispositions are inherited,
natural selection would tend in such a world to eliminate
those individuals without a deep passion for the longest
possible lifespans, assuming no differential replication be-
tween those in favor of and those opposed to individual

. longevity. The net result might be a civilization with a
vrofound commitment to stasis even on rather long cosmic time
scales and a preéisposition antithetical to interstellar

colonization.
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With evén.modest annual growth rates in science
and technology it is clear that a <civilization 106 or 108
years in advance of ours would have technological capabili-
ties which for us would be indistinguishable from magic.
The possibility exists that such a civilization might impose

an absolutely stringent galactic hegemonry. The establishment

of an unbreakable Codex Galactica imposing strict injunétions

against colonization of or contact with already populated plansts (Shklovskii
and Sagan, 1966, D. 451) is by no means excluded. This idea,
which has been called the Zoo Hypothesis by Ball (1975), is

not irrelevant to our concerns merely because it is by defini-

tion unprovable; the detection, for example by radio astronomy,

of civilizations on planets of other worlds would make the
"hypothesis falsifiable. It is clearly impossible to prognosti-

cate reliably on the social behavior of a hypothetical

advancead civilizationl but these examples are put forth to

suggest -that there may be many, still less apparent, social

impediments to extensive interstellar colonization.

On the other hand, Hart seems to have made a fatal
confusion between the velocity of individual spacscraft and
the wvelocity of a colonization wave front (ses also Jones, 1976; Cox,

1976). In the history of human explorzcion and colonization
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it is not a single explorato;y saciety whicﬁ launches all

such ventures, but colonies of colonies and. higher ordar
descendants. For sexample, it might be argued that American
.explpration of the solar system is a fifth-ordexr Phoenician

- exploratory ;enture, the Phoenicians having ;attled Carthage,
the Carthagenians hawving éettled Iberian seaports, the
Iberian; having discoversd America, and the United States
exploring the solar_system. Lebanon and Tunisiz and Spain

are not today spacefaring civilizations. There was a2 waiting
time of centuriss to millenia before the célony acquired suffi-

cient resources to initiate independent exploration or coloniza-

tion, during which. pericd the parent civilizatd o declined. If we
imagine the nth order colonization of z new planet, the time

for acquiring an (o + 1l)th order independent colonization

capability will be substantially longer.

Jones (1975, 1.978) ciaims to show f;ém a Monta Carlo
calculation that even allowing for this colomization waiting
time it is very difficult to make the colonization wave front move
more'slowly:than about 107% of the starship velocity -~ dimplying
that a single expansionist power will colomize che galaxy in |
miOY years if the staréhip velocities are 0.1 ¢. Colonmization-
for Jones providas an escape valve for an overpopulated civiliza-

tion. Consaquently, his colonization front progressaes rapidly.
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Since, in his model, thé number of colonists at any given
time is proportional to the number of ''saturated" planets,
the asymptotic behavior of his model must be characterized
by exponential populatioﬁ growth and by a steadily accelera-
ting.colonization front. We believe this conclusion to be

in error and below present population dynamics arguments on
the velocity v of such interstellar colonial ventures. It

is clear that a comprehensive approach to the problem must
include considerations of the population growth rates; the
related waiting time for the acquisition of an independent
colonial capability on a newly colonized planet; the number
of colonists which arrive on a virgin world with .each expedi-
tion (the larger this number the smaller the waiting time
until the next order colonial venture); the starship veloci-
ties and search strategies; the abundance of untenanted
planets available. for colonization; the lifetime of the
colonial civilization and its descendants; and, not unrelated,
the possibility of interaction between two independent ex-

panding colonial wave fronts originating on separate worlds.

We wish to assess the assumption, implicit in pre-
vious speculations on this subject, that the colonization

wave front advances with an effective velocity comparable to
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that of the individual starships. 1In our analysis, we
adopt some of the methods conventionally employed in de-
scribing growth processes and dispersal mechanisms in
terrestrial ecosystems. Their mathematical development:
provides a‘rigoroﬁs description of the stochastié
properties of such processes and permits the use. of poten-
tial theory. Consequently,‘we can trace the evolution of
the distribption of the organisms that are of interest
without following the detailed behavior of each of its

individual members.

The models we presently describe can be used to
simulate the growth, saturation and expansion of an inter-
stellar civilization "in the mean."” Since the mathematical
formulation of the problem is accomplished via potemtial
theory, our models are complétely specified by a family of
nonlinear partial differential equations. The properties
of these equations can be examined analytically, as well as
numerically, and the results are directly amenable to
scaling. To make the discussion entirely clear it will bhe

necessary firstto review some elementary arguments.
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In biological applications, these models have
proved to be sufficiently general in describing all but
the most catastrophic population dynamics phenomena,
Moreover, the results they provide in the interstellar
context are ;emarkably insensitive to the detailed de-
seription (within limits) of the model and the associated
input parameters. Consequently, the solutions obtained
below are, we believe, less vulnerable to charges of

terrestrial chauvinism than many previous studies.

We now review the population dynamics processes
relevant to our discussion, explore various features -of
their associated mathematical models, and discuss the im-
plications of the model results, The most significant of
these is that the expansion velocity of the colonization

~

front is several orders of magnitude smaller than had been

previously anticipated. Thus, the answer to the question
"Where are they?" may well be that only now are they about

to arrive,
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1. Homogeneous Processes

It is convenient, first, to consider the popula-
tion dynamics Processés that occur in a homogeneous en-
vironment., [In this instance, %e ignore fhe factors that
contribute to iﬁmigration and emigration, for example in
humans. In animal species, biclogists describe such move-
ments as ''dispersal,' a term used to describe all factors
that lead to the displacement .0f an organism from its place
of birth to the location at which it reproduces or dies,
@ee, for example, Howard (1960).] The simplest description
of growth is that the time rate of change of a population

[ . .
v 1s proportional to the population, or

%% = yv ) (1)

where the growth rate, v, is the difference between the
birth and death rates. Exponential population growth is
often associated with Malthus' name although the idea that
populations increase geometrically seems to have svolved in

1/

the Middle Ages, if not in classical antiquity.=

1/ Leonardo Pisano (Fibonaccei) in the year 1202 at-
tempted to reintroduce into Europe the study of algebra. He
posed the problem, complicated by overlapping generations, of
how rapidly rabbits would reproduce f£rom an initial pair in
the first month and then a second pair in the second month
before becoming infertile. The number of pairs capable of
reproducing in a given month corresponds to the Fibonacei
series 1, 2, 3; 5, 8, 13, .. . . Agymptotically, the number
of fertile rabbits increases by [(5% + 1)/21 each month.


http:displacement.of
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The human population growth rate has remained
relatively uniform, with a numerical value of approximately
0.056 yr—l, from the dawn of civilization until the middle of
the eighteenth century. Since that time, in a peripd
representing only 0.027% of human history, the Earth -has
witnessed a tenfold increase in human numbers., Population
experts have speculated that, for the past two centuries,

we have been undergoing & desmograpnic transition. It

began with a decline in the death rate precipitated by

advances in public health and nutrition. Later, the birth
rate declined, primarily because of changes in the

perceived value of having children. In the interim, the

growth rate mushroomed and only now shows signs of stabilizing.

Malthus in his .-Essavy on Population, published im 1798,

recognized the fundamental incompatability between a geo-

metrical progression in population andlthe £inite capacity

of the enviromment co support life. He argued that, in the absence

of "moral restraint," other forms of birth control then wnknown or considered
unconscionable, the combined ravages of war, famine and pestilence

would impose a limit to growth.

A conceptually straightforward generalization of
(L) which is frequently employed in describing this situa-
tion is

T= v W) (2)
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where I'(v) has the properties
£(0) = 1; dEQu)/dv 2 0; £(v ) = 0, (3)

and where v, describes the carrying capacity of the en-
viromment  as the meximum population that it can

SUpPpPoOTL. The function £(v) decreases in a manner that
reflects the diminishing ability of a particular environ-
ment‘tO'support population grow?h. A simple but representa-

tive example of this function is

£u) = ¢ s’ s (&)

.The corresponding differential equation for the population

growth (the Pearl-Verhulst law)

T dv _
o= (- v/v) (5)

has a gemeral solution given by
v.(0) v, e’ .

v(t) = —
- v(0)] + v(a) e'* (6)

(Vg

whera v(0) is the initial value of v(g). This curve has a

charactaristic S shape and is referred to as the logiscic.



~16-
This curve shares the qualitative properties common
to virtually all models of homogeneous processés: exponen-
tial (Malthusian) growth for v << v_, followed asymptoti-
cally by saturation at v

' We employ the Pearl-Verhulst
‘law extensively in what féilows to desczibe homogeﬁebus
processes. A particularly readable account of the
appropriate nathematical theory (as well as
equations déscribing multispecies interaction or
"predator-prey' systems) may be found in Davis (1962).
Coale (1974) provides an interestiﬁg introduction to the

history of the human population.

2. Heterogeneous Processes

Many factors contribute to the rates of dispersal
in animal specieé. Certain ones are innmate; othgrs are
envirommental in oxrigin (Howard, 1960). The simplest of
these, random dispersal, is a mechanism fhat evolved in
order to reduce the incidence of homozygotes. An animal

such as the muskrat, Ondatra zibethica L., will head off in

a randomly selected direction over some characteristic
distance before it mates, reproduces and dies. Since in-
breeding is in this way avoided, the frequency of generic racombination

of deletsriocus recessive mutations is reduced.
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From a probabilistic point of view, each muskrac
executes (in the absence of population growth) a random
walk or Brownian motion. On the other hand, the behavior

of the muskrat'pqpulatiOn distribucion is described by the

diffusion equation.

The equivaience'of Brownian motion and diffusiom is
well-known (see, for examplse, Chandrasekhaxr, 1943; or Kariin
and Taylor, 1975). Since 2 firm understanding of these
phenomenz is essential fo% our discussion, and has been in-
completely apprecizted in some previous discussions of the
oroblem, . we consider a simple and standard example -~- the
drunkaﬁ@"s walk. We have a linear array of lampposté; each a
vdisténce4£ from the next, that lights the street on which both

a bar and a drunkard’'s home are situated. The drunkard
is able only to walk the distance between onejpost and the
next befora he collapses. He then arises a time t later and
sets -out toward another lamppost. The:time imterval berween consecutive
drunkard-lamppost collisions is then t. Unfortunately,,he'has
no sense of directiom and if is eqﬁally likely that he will
stagger to the left as to the right. If pi is the proba-
bility that he is. at lamppost n at time interval k, then che

equation governing his behavior is readily observed to be

k+1 _
0 =,

k (7)
P .


http:Unfortunately,.he
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(When posed in this manner, the drunkard's walk is an
example of a Markov process; eq. (7) is known as the

Chapman-Kolmogorov relation.) Rewriting, we cobtain-

k+1 k 2 k k k
n T P p'n+1-2” -i-p -1 (8)

22

Taking the limit as AL and < go to zero (but in & manner

_ L
T 2

whereby £2/21 remains fixed) and noting that, from a first

and second order Taylor expansion,

,( pk-i—l pk
) a—p- = = = im ) n - n
3t (= =k, € = ko) T+ 0 T ’
2 Lk k 2
2 o =nl t=%k0 ,Qm n+1 205 + 05
3X2 - 12
(where we have explicitly made the transition from a dis-
crate to a continuous system), we find eq. (8) becomes the
diffusion equation
A

9 37

2 =D (10) .

3t X
where the diffusion coefficient D satisfies the relation

2 .
—%é . (11)

Generally,.z and t© are called the collision mean free path

and che collision time, respectively. The mathemacical
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limiting process just described can be performed
rigorously. The essence of this demonstration is that
there exists a2 precise method for describing random,
stochastic processes via partial differential aquations,

a method known as potentizl theory. In practice, poten-

tial theory affords =z much simpler and more reliable means

of determining the behavior of a given population (whether it

be composed of muskrats, drunkards or, we c¢laim, extraterres-

trials) than the associatad random process (which, other-

wise is omnly accessible to Monte Carlo methods).

Before returning to the specific problem of
matching the dispersal of muskrats, let us explors some
properties of the diffusion equation. As a generalization
of (10),. the diffusion equation can be written

20(,8) = ¢ . {D(x,t,0) Tolx,t)

pt 7

-

where e(z,t) now deécr;bes the population density. Here,

the dimensionality of the process is increased in order to
best reprasent the problem a2t hand (typicall?, terrestrial
probiems ara two-dimensional)., Here D, the diffusion co-

efficient, need not be comstant but, by this formulatiom,

(12)
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the conservation of the total population‘j;(g,t)dg is assured.
(In such conservative cases, it is éommon practice to employ

the terms population demsity and probability density inter-
changeably, although these quantities are of course not equal.
The ratio of the first to the second is fixed, an@ighe pro-
portionality constant is the total population.) By allowing

the diffusion coefficient to vary, we can, for example, reépresent
the influence posed by geographical or envirommental factors.
When muskrats face az mountain range, their advance is slowed.

In the presént model, it follows that they will travel over a
shorter distance.z in a time T than would be the case for a flat
plain; the diffusion coefficient drops correspondingly. As a
result, the flow of emigration observed does not follow straight
lines but describes an extremum-path of least resistance.
(Some sources tend to discount the utility of employing diffu-
sive terms in pooulation dynamics. They furnish the erroneous
counterexample that Minnesota would have been colonized by
Europeans long before California, if the diffusion equation
were employed. However, they overlcook the point that D should
be decreased to represent the difficulties faced in overland
travel by settlers coming to Mimmesota

and increased - to describe the rela-
rive ease of ocean travel to California.) We see later how a

population-dependent diffusion coefficient can be employed to
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describe social and territorial influences on emigration.
For the sake of simplicity din our later discussion of in-
terstellar colonization, we assume that space is homogeneous
ovar a suitably large scale so that D will have no spatial
variarion. We shall, however, permit the diffusion’ coeffi-

cient to be population density dependent.

Since we will later be concerned with the problem
of assessing the wvelocity of the colonization fromt, it is
important to point out that the velocity associated with
the diffusion process described by eq.. (10) is not well-
defined. TFor example, if we define <x2>, using the

probability density p(x,t) as

<x%> =‘j-x2 o(x,t) dx (13

-
and integrate eq., (L0) by parts twice, we find

Edt- <x%> = 2D (14)

2>%, which might be considered

Thus, tﬁe quantit§ é% <X
representative of the valocity, variaes as tf%. Einstein
(1905), in his classic microscopic treatment of.Brownian
motion, showed that this anmomaly only arose when timescales
shortér than the collision time are considered. He

demonstrataed rigorously that the correct velocity at small times

is 1/7. Another way of characterizing the velocity v is



to compare the continuity equation (where j = pv is the -

£flux)

ar

5‘%"‘ vij =9 (15)

\P o

with (12); i.e., we make the association -(known as Fick's

law) that

1=-D Vp (16)

or, alternatively,
v=-Dp "~ ¥p (17)

Thqs, the velocity a;sociated with a diffusion coefficient
independent of population density varies inversely as the
density e-folding lehgth but has no dependence on the
density itself. In both of these descriptioﬁs, each
measure of velocity possesses certain undesirable qualities
which can be attributed to the fact that the solution to
the diffusion equation (10) is spatially unconfine&,because

the Green's function
G(x,t) = (47Dt) % exp tx2/4DE] (18) .

causes any initial configuration to be propagated and

redistributed instantaneously over all space. We later
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see how nonlinear diffusion can overcome this wvelocity

-anomaly.

In practical situations; the diffusion coefficient
is determined using Fick's law, i.e., as the guotient of
the flux and the density gradient. In theoretical con-
texts, the diffusion coefficient must sometimes be deter-
ﬁinedwusing other considerationms. For example, discretizing

(10) »and using length and timeé scales Ax and At, respectively,

we f£ind
K+l _ . At |k K .k [, - 2mac
o =D —=5 |p oo, _q] T, [T (19
n sz (n+l n 1) n ( sz
Thus,. the effective probability P of leaving site n for
either siten-1 or n+1 in a time At is given by
_ P = 2Dat/ax’ (20)
Alternatively, the diffusion coefficient in m dimensions
may be determined using'the probability P, wviz,
D = PAx®/2mAt (1)

Despite our misgivings about the linear diffusion

equation, it has proven remarkably successful in describing
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the dispersal of muskrats., Skellam (1951), citing earlier
work, shows how well this model depicts the spread of

Ondatra zibethica L. since its introduction in central

Europe in 1905. But muskrats are not extraterrestrials and
the model must be adapted to include social influentCes on
emigration patterns as well as the effects of pdpulation
growth and saturation. (Skellam's treatment corrects for

population growth, but only a posteriori). The possibility

of an advanced civilization which practices zero population
growth must be explored. Moreover, all this must be done

in the context of estimating the velocity of an expanding

population front.

.3. Density-Dependent Diffusion

Consider, now, the case of a diffusion coefficient

proportional to some power of the population density,
D(p) = D (p/p )" (22)
Q Qo

For N>0, this generalization of the diffusion equation
(12) has several conceptual advantages. From'(IY), we
obtain a velocity that now has a population density de-
pendence, From the probability expression (20) for the

drunkard's walk, the likelihood that a drunkard will leave
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for another place now depends on how many other drunkards
are converging on his lamppost, This is precisely the
feature we desixe: the probability of mounting a coloniza-
tion venture is a rapidly increasing function of density,
even if emigration cannot relieve the population pressure.
- [A mofe prounounced density dependence would arise by using
an exponential dependence on the demsity. Crank (1956) in-
vestigated the problem numerically in certain isolated cases.
The analytic properties of the solution, however, are not
well-understood., For our purposes, the power law in (22)
will suffice in deécribing a representative cross-section

of density dependences. ]

For the moment, we continue to neglect
the homogeneous processes of growth and saturafion. This
might ﬁot be an unreasonable assumption in describing an
advanced civilization. It seems likely that such a society
would have undergone a long period of zero population growth
while it developed the technological capability for inter-
stellar flight, Otherwise, expomnential growth would have
diverted all available resources to the task of feeding 2
‘burgeoning population. ZPG must be an essential ethic of

any society which is able to colonize other planetary systems.
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In the spherically symmetric three dimensional

case, the population-dependent diffusion equation becomes
0 D1 .2 (_o_)%g
5 (T DO (23)
3t T~ or s 2y pnore

In this form, the equation describes the "porous medium
problem” and is frequently encountered in hydrology and soil
science. [In the latter application, one considers the
flow of a fluid through a porous medium. The mass of the
fluid is conserved and it is assumed to obey a polytropic
equation of state. Instead of the Euler force equation,
the fluid is said to obey Darcy's law which provides for a
velocity that is proportional to the pressure gradient,
Muskat (1937) provides a definitive treatment of the problem.
" Philip (1970) offers an historical review of the subject
including a treatment of selected topics in the theory of

porous media. ]

A formally identical equation is encountered in
the physics of high-temperature gases, the ''thermal wave"

problem:
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Here, T is the teméeraturg and the diffusion coefficient
is temperature-dependent as would be the CaSE‘in: for
example, an ionized gas. Such a circumstance arises im-
mediately after a high yield nuclear explosion:,'when
temperatures are sufficiently great‘that the velocity
associated with radiative ehergy transport far exceeds

the sound veloceity., Since diffusion is now much more
efficient at higher temperatures, it quickly acts

to equilibrate the temperature distribution of the
radiatively-heated gas. There is a thin boundary

layer separating the hot gas from thevambient'atmosphere
that has not-yet been heated by the radiation. Im this
boundary layer, called the "thermal wave front," the
temperature undergoes a precipitous decline. Consequently,
the thermal wave front is slow to éonduct heat and the net
temperature distribution changes slowly.

The overall result of these different effects is
that the temperature distribution preserves a constant
shape. Qualitatively, the temperature is relativeiy
uniform from the origin to the thermal wave front where
it declines rapidly to zero. Quantita-

tively, the temperature (expressed in units of the
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temperature measured at the origin) is a function only
of the radius (expressed as a fraction of the thermal

wave front radius). To illustrate this, consider the

o

one-dimensional analogue of (24);,

N T : (25)

-2
ox at ax

bt

From this equation, we see that the quantity

Q =J[ T(x,t) dx (26)

is conserved (Q is proportional to the total thermal
energy). There is only one dimensionless combination
of the coordinate x and the time t that can be obtained °

in terms of a and O using (25) and (26):-

- X .
RN S VA G LY . 27

The quantity (Qzlat)l/(N-Pz) has the dimensions of
temperature and a solution to (25) which presexves its

shape is

£(8) . (28)

9 1/(W+2)
at

T(x,t) = (Q—

The solution for f£f(&) (see 7el'dovich and Raizer, 1967, for

details) is
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| 1/ 59 L/N.
£(E) = [ﬂﬁ%y gg] [l* %) ] BT
. TR

where -

N/2

1/ (N +2) . N/ (W +2)
. - [(N+.2.)1,+1\1 Z.LsN] [ 5 ¥ .I/N)]
o)

N

For the case N = 0 [i.e., eq. (10) taking D = a];
2
£(8) = (4m)"E o84

The normalization employed provides

ff(i) dg = 1

and, for N>0, the position of the thermal wave front,

using (27), ié_just

% = 45, (a o 0/ @T+2)

(29)

G0

(3L).

(32)

(33
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In Figure 1, £(&) is shown for N = 0; 1 and 2. From
eqs. (29) and (31), we -see that:

a) if N = 0, the distribution is unconfined;

b) if O<N<1l, the distribution has a finite cut-off
where the temperature gradient vanishes;‘

c) if N = 1, the temperature distribution has a
finite cut-off with a finite, non-vanishing -
temperature gradient; and

d) if W>1, the temperature distribution has a
finite cut-off with an infinite temperature
grédient.

The particular curves given in Figure 1 correspond to a
Gaussian, a parabola and an ellipse, respectively. Apart
from a differing normalization factor, the £(&) profiles

for spherical symmetry [eq. (24)]1 are unchanged. fhis
solution to the porous medium or thermal wave problem was
obtained independently by ‘Baremblatt (1952) and by Pattle
(1959)., A thorough, physically motivated discussion of

this problem is given in Zel'dovich and Raizer (1967).

Knerr (1977) reviews some of the mathematical questions that

arise in the one-dimensional version of this problem.
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As we hdve zlready noted, the shape of the
temperature distribution is presexrved in this solution.
Such a solution is called "self-similaxr.” [In the
Russian literature, solutions of this type are called
"automodelled” solutioms. Courant and Friedrichs
(1948) were the first to consider such sﬁape-preserving
solutions in application to gas dynamic shocks;
tﬁey employed the term "progressive waves.']

Generally speaking, similarity solutions are charac-

‘cerized by an equation of the type
r. = Ac® (34)

where rg describes the radius of the phenomenon

being studied (e.g., a shock fromt or a thermal wave),

and A and o are constants.

There are two types of self-similar solutioms. In

the first, o is obtained by dimensionzl znalysis and A is

selectad in order to satisfy a physical comservation law, The

thermal wave problem is a case in point and egs: (30) and
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(33) display the relevant features of the scaling.g/

A second type of self-similar problem is charac-
terized when o is selected to insure the existence of a

mathematical solution. Since o is not known from

=,

R

dimensional consideratiouns, the- self-similar solution

is usually obtained by exhaustive numerical tests.

The standard example of such a problem is the implosion
physics studied by Guderley (1942). In his case, <0 and
trial values of ¢ were varied (while numerically integrating
the fluid dynamics equations) until a value of o was found
that satisfied his boundary conditions. A more pertinent
example of Type II self-similar solutioms is that asso-
ciated with the semilinear diffusion equation in omne

dimension. (This equation is often used

" 2/ Another example of such so-called Type I self-
similar solutions is that obtainad for a strong isotrovic
blast wave, as when the thermal wave described ezarlier cools
sufficiently for gas dynamic energy transport to be more
efficient than diffusive dissipation. This solution was
first obtained by Sedov (1959%) in an application to super-
novae. He argued that the shocked gas would lose its memory
of its "initial"” conditions due to convection and would ap-
proach a solution characterized only by the total energy B
of the original blast and the mass densicy p, of the unper-
turbed gas. In that case,

1/5 tz/s

e =& (E/0p)
describes the radius of the shock, whers &. is a dimension-
less number of order unity selected to asslire that the blast
energy equals the total internal and kinetic energy of thé
shocked gas. It is not without some irony that the methods
for treating explosive processes, such as thérmal or blast

waves, and, in pdrticular, nuclear explosions,.are valuable
in studying population dymamics.
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in population dynamics modelling; we examine it in
detail shortly.) In that case, the solution for the
density p(x,t) can be expressed as a "travelling wave'
o(=z - vt) where v is the velocity of the travelling wave
("uniform propagation regime' in the Russian literature).
If we take x = X EE X and t QEEE T, then the solution can

be written as p () where

g = x/rv

Comparing chis with (34), we find that

v

Xg = 8¢ °
describes the position of the travelling wave fromt,

where £, is 2 constant and Vv has the same role as c.

~ . Although self-similar solutions are special
solutions characterized by s dependence on 2 single
dimensionless wvariable, £, they appear to describe the

"intermediate-asymptotic"” behavior of a much broader class

of initial, boundary and mixed problems. In przctice (for

example, in the case of the thermal wave), the solution
often loses its memory of the initial znd boundary condi-

tions. Then, the solution evolves into one characterizad

O o0 QUALTTY]

(35

(36)
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only by, e.g., conserved quantities (such as Q) and
parameters that spgcify the problem (such as a). This
property of self-similar equations has been rigorously demon-
strated only for the linear diffusion equation (19). and the
semilinear diffusion equation., Numerical and experimental
results {(where available) display the convergence of solu-
tions to self-similar form under a broad array of initial
conditions. Thus, self-similarity is not of interest
simply because it facilitates the calculations; but also
because it describes a seemingly genuine asymptotic feature

of the solution (see Barenblatt and Zeléovich, 1972).

To recapitulate, we observe that a population-
dependent diffusion coefficient overcomes many of the
problems inherent in the conventional diffusion equation.
From the self-similar solution, we obsexrve that the distribu-
tion is confined. Moreover, the velocity of advance of the .
wavefront is no longer anomalous but can be calculated

directly from eq. (33), for one dimension, or {for N>Q) from

1

302

re = &4 (a QN t) (37)
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where :
1 5 3y o N
£ = |_3N+2 3WF2 -'r{?+§?) ‘EN“"Z
LN -1 0 r[1+.§.} r(%’

in three dimensions (Zel'dovich and Raizer, 1967). The
velocity monotonically decreases as a function of time.
(This comes about since the central density decreases
causing the diffusion rate to diminish accordingly.)
Although this model ignores homogeneous processes, it is
a useful description of situations where the overall
population is conserved (ZPG) -and

provides wseful imsight dinto models that ﬁombine both

homogeneous and heterogeneous processes.

4, " Diffusion and Growth

As a first step toward simulating the combined
effects of homogeneous and heterogeneocus processés, con-
sider the equation'

-%ﬂ = ap + a lﬁ g%-[rsz'%%]
r
This is similar to an approach first proposed by Gurney

and Nisbet (1975). By employing a population-dependent

diffusion coefficient, they suggest that one can describe

(38

(39)
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one non-random cause of dispersal, the "directed-motion"
associated with territorial drives. (They confined their
attention to the case N = 1,although they did allow for

an additive third term describing random motion; this

they called the biased random motion( model.) Amplifying

on this theme, Gurtin and MacCarey (1977) proposed a method

of solution for the one-dimensional analogue of (39),

3
5= =up +

s
£ kp

oxX

After making the substitutions

_ _ SRt
P =e ut_p,- T = [(a=-1)u] 1{e‘xp {(a-l)ut]«’lf'

' = x(ka)"%, N=oqa-1,

we obtain

2y = 0 sN 56
at P <7 VP %

We have already discussed the solution to the latter
equation [via eqs. (25) through (30)]. However, because
of the scalings employed in (41), we observe that

p(x=0, t) must ultimately increase exponentially with
time., To eliminate this anomaly, we must prevent the

population from growing above the local carrying capacity.

(40)

(41)

(42)
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5. " The Semilinear Diffusion Equation

We wish to describe the behavior cof an organism
with advantageous genes which undergoes random dispersal
while increasing in population locally according to the

Pearl-Verhulst logistic lawp- In one dimension, this can

be written

L=y (L-0/oy) + (DL (43)

where vy is the local growth rate, Oq is the local carrying
capacity (or -population-density saturation level) of the
environment and D is the local diffusion coefficient
(assumed here to be population-independent). Furtﬁer, it
is assumed that v, P and D ére-éonstant and do not wvary

spatially or temporally. Making the transformations

. o' = o/png, ot =yt
(44)
-3
x' = x(D/y) @ ,
eq. (43) becomes
3 42
= = p{l-p) +§X~2'D (45)

(where, for convenience, the primes have been dropped).
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Fisher (1937) and Kolmogoroff, Petrovsky and
Piscounoff (1937) independently proposed that eql (45)
has a right-going travelling wave solution. [The
relationship of the travelling wave to self;éimilag;“
solutions was reviewed in the discussion leading to eqs.
(35) and (36).] Assuming, then, that p depends only on

%-vt in (43), we first transform the velocity v into
-~ =%
¥ = v(y)* , - (46)

where ¥ is a dimensionless.quantity, and, employing (44)

and (45), obtain the ordinary differential equation

2
-%%%w(l-p.)a-(—f;zp . (47)

We wish now to find the range of ¥ for which eq.. (47)
possesses a solution. (Recall from our earlier discussion
that Type 11 similarity -solutions are characterized by a
dimensionless constant, in this instance ¥, whose value is
chosen in order to insure the existence of a mathematical
solution.) Since we assumed a right-going travelling wave,
we should expect the density p to decrease monotonically
in the direction of incréasing X, Further, we assume that

Iim p(#) = 0

X»too

(48)

1im
Ko p (X)

il
-
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i.e.,, that the density vanishes in the region unaffected
by the travelling wave, while the source of the organism
(infinitely far off to the lgft) is supportgd at the
carrying capacity. Since p is assumed monotonic in x;

we can replace thé derivatives in (47) according to

d __ 4 . _ do
E"’ qa'é': q = dx

(q is defined so that it is necessarily positive-valued).

Then, (47) becomes
. - d .
Ve =od-p) +aga . .

Near the origin (i.e., o =0), this equation has the

asymptotic representation

~ d
vq = p + g E%

Since we expect that gq vanishes when o = 0, consider

a solution of the form
q="bbp ,

where b and n are real-valued positive constants, Sub-

stituting into (51), we find that n = 1 and

¥ = 1 + b2

(49)

(305

(31)

(52)

(53)
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Solving for b in terms of ¥, we obtain
g &
b=[%%@- % /2 (54)

Therefore, in order to guarantee that b be real-wal

o

ued,

the discriminant must be positive and
22 (55)

(The case ¥V £ -2 corresponds to a left-going travelling

wave. )

Although Fisher and Kolmogoroff ‘et al. obtained
this result, Kolmogoroff et al. went on to show that the. .
solution to the partial differential equation (45),
initialized as a step function, converges to'a right-going
travelling wave with the minimal velocity ¥ = 2, Although
a continuous spectrum of prcpagation velocities ¥ 2 2 is
in principle possible, only the solution corresponding to
the extreme point of the spectrum (¥ = 2) can be an asymp-
totic solution to the partial differential equation (43).
Therefore, the velocity of the front of advance of the ad-

vantageous genes, in Fisher's formulation of the problem,

"converges' to 2(Dy)%.
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Although this model from population geﬁatics can
be made more general by employing a broader description
of in situ growth processes than that provided by the
Pearl-Verhulst law;, such_modelg are charéctefized by
random dispersal, i.e., a population-independent diffusion
coefficient (see, for example, the review article by
Hadeler, 1977). Characteristically, they have travelling
-wave,solutions'which, when normalized in a similar fashion,
also give ¥ = 2. Thus, despite the presence of a lineax
diffusion'term, the associated velocity of advance is well-
defined [as coﬁtrasted with the absence of a self-consistent
velocity for the linear diffusion model in the absence of

population growth, eq. (LO0)].-

There is, however, one feature of this model
(apart from-the population~independent diffusion coeffi-
cient) that is undesirable. ¥From eq. (54), we see that

b = 1 when ¥ is minimal and, from (49) and (52), we find
p(E) « e % (56) .

when p is small. Therefore, the population's travelling

wave front is unconfined. [This again parallels the result
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obtained for the linear diffusion model (10).]

This model has been employed in describing the

interaction of several species. For example, in a

——n
-

homogeneous environment, the equations describing a

predator, denoted by Py and its prey, denoted by Py,

might be written

Q2
©
=

A
i

T TPy T PPy
. (57)
CaPp ~ C4P1P2

(234
N

I

Q>
oF

where Cy, €9, C4 and cy, arglpositivg constants. In Fhe
absence of prey, the number of predatcrs will decay
exponentially., On the other hand, in the absence of
predators, the number of prey will grow exponentially. -
When both predators and prey are present, the growth rate
of predators increases while that of the prey decreases.
This formulation 5f the predator-prey relationship is
generally associated with the names of Lotka and Volterra
(see Davis, 1962, for a simple treatment of the mathe-
matical theory), and describes accurately a number of well-
‘observed ecosystems. The‘solutions to eqs, (57) describe
closed orbits in the 0109 plane and are akin to the solu-

tion for a harmonic oscillator in that o, and po will
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oscillate in a pattern strictly determined by initial
conditions. When eqgs. (57) are augmented by linear diffu-

zplfaxz nd D azpzfaxz, respectively, our

~sion terms D 3
-equations assume more of the character of the semilinear
diffusion equatioh (43).' An example of the predator-prey
relationship is seen in herbivorous copepods (zooplankton)
which feed on phytoplankton.' In performing a linearized
perturbation analysis ﬁor such marine planktonic communities,
Steele (1974? noted that all finite wavelength perturba-
tions will be damped and the ecosystem will tend to spatia;
homogeneity. Nonlinearities,.however, could conceivably

destabilize the situation. Levin (1976) and McMurtrie (1978)

have reviewed the multi-species population dynamics problem.

In the case just deséribed, diffusion acts to '
stabilize the system (at least in a linearized representa-
tion). In other circumstances, diffusion can produce a
travelling-wave similar, in certain respects, to that of

the semilinear diffusion equation (45). This feature was
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employed by Noble (1974)§/in devising a model for the

Bubonic Plague of 1347, His equations are

'%—%=KIS-QI+DVZI

) , = (58)
38 _
8 - k1s+Dpv’s

where S and 1 are the densities of the susceptible and

the infected populations, p is the disease’'s mortality
rate, and D is the diffusion coefficient. The coefficient
K describes the rate at which the plague is transmitted
locally., (There is, in fact, a thifd "species' implicitly
included here, the density of individuals B who have con-
tracted the disease and either perished or recovered. The
"mortality" rate p describes the rate at which this third

population density grows, 3B/3t = pB. The total population

3/ Noble compared his model predictions with the
information available on the Black Death (Langer, 1964).
His results appear to match what is known about the geographic
advance of the disease. ' In commenting on the applicability
of his model to other epidemiological problems, he suggested
that the spread of certain mass sociopsychological phenomena
(such as new religions) might be sufficiently similar to that
of plagues te be worth investigating by similar methods. It
is possible that the spread of UFO belief systems might be
described in this way. .
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f(1+s+3) a2

represents the rate of change of the number of infectives

x then remains constant.) Eg. (38)

within a small area as the rate of transitions (KIS) from
the susceptible population less ‘the removal rate (due to
mortality, -ul,.and dispersal D 321/’ax2').- Meanwhile, the
rate of changé of the susceptible population within a
small area is a net loss due to the transition to the in-
fected population (-KIS) and dispersal (D aZS/BXZ). Noble
performed a numerical integration of the one-dimensional
analogue of eqs. (58). His simulation gquickly evqived into
a pair of trafelling waves, one describing the infectives
and the other, the susceptibles. The qualitative shape of
the two population distributions is depicted in Figure 2.
-Thus, we see that semilinear diffusion acting in a multi-

species problem can produce a set of travelling waves just

as we observed in the single species case.

6. Density-Devendent Diffusion with Growth

- and Saturation

2

We have already described the need for a population
dynamic model that combines local growth and saturation
processes with spatial dispersal mechanisms that are

population-density dependent. This model, in onme dimension,



may be expressed as

IS - 2.
===v0o (L -o0o/o) + 353

where the diffusion constant D is scaled in order to
; &
provide the diffusion coefficient when p = p_ .—

the transformations (44), we obtain an equation analogous

to (45), namely

Q>

N

Q2
O

t
@
o

3
— ']
sE=pl -0) + 5= o0

(39)

(60)

We have investigated the properties of the solution to

eq. (60) for wvarious N by numerical means.
equation was integrated using a conventional four-point-

explicit integration scheme (Richtmeyer and Morton, 1967).

4/ Density-dependent diffusion does not make ami-
gration a response to population pressure alone:
Flux of the population is given by -D(o/p )\ap/ax, the
density gradient plays an all- ~important rdle..
exzmple, there is little net movement of a populatlon that
is aoprOXLDately uniform In density, even if the densitv is

nearly saturated,

Since the
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The density distribution, following Kolmogoroff et al.
(1937), was initialized as a step functiom
L x < 0

oz, t=0) = _ .
’ 0 x> 0

Since we were also intersested in the spherically symmetric

case, we numerﬂcally integrated

e
- e

)
2}
aj
o

mle

28 = o(L - o) +

"3 Z
3T a—“’-'-"

‘ﬁJH

using a stable differencing scheme developed by Eisen
(1967) in applications to the sphericzally symmetric diffu-
sion‘équation. The initial conditions employed were
e . T < Tg
pr, £t = 0) =% ‘
0 T > Tg

- s
g i

WherE“rf is 'some arbitfary radius, As a test of the
integration methods, the case of N = 0 was included. fn
both geometries, for N = 0, 1 and 2, the numerical solu-
tion evolved into a travelling wave. (The asymptotic
correspondence between the one dimensiomal and spherically

symmetric cases is not surprlslng The only diffarence be-

tween their respective egquations is (2/r)p ao/ar Assuming

that the solution tends to the form p(r - vt), thﬂs

(61)

(62)

(63)
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term makes a contribution of order tql, which at large
times is negligible.) Since, for N = O; the numericzally
evolved travelling-wave has a vglocity very near 2, we
consider the asymptotic convergence of thé solutions (for

= 1 and 2) Eo travelling waves to be significant. Figure 3
illustrates the density profile for these three cases.
In order to facilitate a2 comparison between the wave fronts,
the density profiles are comstructed so that density is

one-half at the origin.

Several otrher interesting features of the solﬁtion
emerge from the coﬁputer analysis, First, the wvelocity ¥
of the travelling wave [eq. (46)] decreases with in- |
creasing N. The values obtained for N = 1 and 2 were ap-
proximately 0.70 and 0,45 respectively. (Higher wvalues of
¥ were also investigated. TFluctuations in V made these
cases difficult to estimate, but the decline of ¥ with in-
creasing N'was unmiscakable.) Secondly, the density profile

near the point of vanlshlng density resembled the self- 31m11ar

thermal wave profiles for N = 1 and 2 which apnear in Fig, 2.
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Consider, therefore, the problem of findiné a
travelling wave solution to (60). Employing the methods
used earlier in our discussion of the semilinear diffu-

sion equation, we write the equation for o(x) as

- dp

V=l - ¥.é% pﬁr%%%

Then, making the same assumptions here as were employed
in obtaining (50), we have
- Cd N
= - +
Vg=pod -p) +qg5 (b
As before, 'we obtain an approximate solution as a power
law [eq. (52)1, namely

’Trpl-N., N> 0

q:
% [%4- (:;2_4)]9 N=0

Near p = 1, the solution is given approximately by
q=X% [({'72+4)% - *Tr] (L - p)

for all N. Integrating (67), we see that the density

exponentially decays to unity as we move inside the txra-

velling wavel Near the front of the travelling wave, the

density (for the N = 0 case) decays exponentially.

(64)

(65)

(66)

(67)
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However, for N nonzero, the solution is of the form

o) = N ¥ (xg - x] N (68)

where X denotes a cut-off point to the right of which
the density is identically zero. This behavior is essen-
tially the same as we observed in the thermal wave problem
for N>0 [see eq. (29) and subsequent discussion] and ex-
plains the striking similarity observed in comparing the

N =1 and 2 curves in Figs. 1 and 2 (the thermal wave and
travelling wave fronts, respectively). What has occurred
is that, for N> (0, the growth and saturation term in eq.
(64) has no influence on the shape of the density pfofile
near the cut-off point and a solution reminiscent of the
self-similar thermal wave problem emerges‘. The growi-:h and
saturation terms, however, have a controlling influence on

the determination of ¥.

Upon finding this asymptotic behavior, we noted
that (67) was an exact solution to (65) for N = 1 if we
% . . .
set ¥ = 272, A straightforward integration then gives
1 - exp [27%(x - x )1, <%,

p(x) = - - (69)

0, x>X,
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This profile corresponds, within the numerical limita-

tions posed by the integracion scheme, to the computed

solution and the predicted travelling wave velocity of 27% cor-
responds well with the numerical result of 0.70. Although we

are not at prasent able to damon;trate the stability of this

solution (in the semse of Kolmegoroff et g&.j, the con-

veréence observed in the numerical solution to the profile.

given by eq. (69).1is & relatively convincing demonstration

of some form of asymptotic stability. However, unlike the case of the
Fisher—Kolngoroff.proBlem,_we have explicitly obtained a

. = : . . o 5
closed form expression for the population densicy prorlle.ﬂ/

5/ Lax (1969), in presenting the ninth John wvon
Neumann Lecture of che Society for Industrial and Applied
Mathematics remarked on how fzscinated von Neumann had be-
come by the possibility that patterns disclosed by numerical
calculations might reveal entirely unsuspected properties of
solutions of nonlinear differential equations. A case in
point is the Koritweg-deVries equation which describes long
waves over water and some wave phenomena in plasma physics.
In his lecture, Lax went on to describe how Kruskal and
Zebusky discovered the existence of certain solitary wave
solutions after studying motion pictures of the computations.
In Our case, the computed golutions to eq. (59) pointed out
the existence of an asymptotic travelling wave solution
and, in one instance, led to a closed-form analytic expression
for the profile and its associatad travelling wave velocity.

i PRAGE B
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7. Summary of Mathematical Approaches

We have reviewed the advantages (and limitations)
of potential theory in describing population dynamic
processes. We have observed that dispersal is essentially
a diffusion process whereas population growth (if it takes
place) is restricted by the carrying capacity of the en-
vironment. A density-dependent diffusion coefficient was
shown to be capable of describing the desirability of
emigration (all other factors being equal). Essentially,
two basic models emerged. One model described a condition
of zero population growth. The properties of its solution
may be obtained from the porous medium or thermal wave
problems. The second model also included local growfh and
saturation. A numerical study of its properties disclosed

the existence of an asymptotic travelling wave solution.

Two features emerged from our population dynamic
modelling. First, the velocity of thé colonization wave
front can be estimated by dimensional analysis using the
physical and other parameters that influence the evolution
of the civilization. The parameters that contribute to
this problem include the growth rate y and the diffusion co-.

efficient D. The latter, in turn, is related by eq. (21) to
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the effective probability P that an individual member of a
civilization will embark om such a venture, the mean distance
Ax betwéen habitable solar systems and the effective time
span At between successive colonization ventures (to be dis-
cussed below). Second,-the dimensionless multiplying co~
efficient that appears in the expression for the wvelocity

(§ or ¥ ﬁo& the zero population growth and travelling wave
solutions, respectively) is of order unity for all models
and the'explicit dependence of tﬁe velocity on the physical
parameters is characterized by power 1&&5 with fractional
exponents. This manifests itself in velocities that are
remarkably and encouragingly insensitive to the particular
mcdel and parameters employed. In the next section, we ses
how both models, applied to interstellar'colonizatiép, yield
a much lower colonization wave velocity than had previously

been predictead.

Before continuing, we should point out why our
models provide results that contrast so strongly with those
of Jones (1876). We recall that, in his model, all saturated

solar systems were sources of colonists. In all of our



-5—

diffusion models that include population growth and
saturation, the flux of colonists goes as pN ap/or
(where we now employ spherical symmetry). From our

computed solutions, the flux is significant only in a

thin layer at the population wave front. In both Jones'
and our models, colonists are the source of population
growth (all growth has vanished from the saturated in-
terior region). In our case, however, colonists are
produced only near the surface of the sphere enclosing

an interstellar civilization. We stress that this
qualitative understanding of the difference between our
models and that due to Jones evolved only after exploring
the methods and assumptions implicit in current population
dynamic models. It was only after performing an extensive
analytic .and numerical investigation of the equations of
population dynamics that we were able to distinguish the
two most prominent features of population dynamic models:
expansion due to directed diffusion from the colonization
front and a velocity of expansion that is, at the same time,

characterized by but relatiwvely insensitive to the physical

and sociological parametiers involwved,
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In each case, the rate of population increase
dv/dt is proportiomal to the aumber of colonists 8 present, i.e

+ 2

dv/dt = Asg : (70) )
In our case, 6§ is proportional_ég the
surface aresa of the saturated sphere containing the ex-
panding interstellar civilization. Since v wvaxies as the-
radius of the sphere, r., to the third,power, our model. pre-

dicts

g = Bv2/3 : (71)

Jones' model pradicts

8 = B'v : ' (72)
Combining =qs. .(70) and (71) gives

v e £ . (73)

Therefore, our model predicts that ry = ¢ and we have
é‘colonization sphere that is undergoing uniform expan-.
sion. On the other hand, Jones' model [eqs. (70) and (72ﬂ
yields

v = exp (AB"t) . . (74)

Consequently, his model gives an exponentially growing
colonizacion front velocity. The critical difference
berween Jones' model and ours is that our model supplies

colonists only from the periphery of the civilizatiom.
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Since we expect the core of the civilization to be
saturated, almost all available resources would by definition
be committed to the continued maintenance of the local eco-
system and few, if any, resources would be available for the
conistruction of starships capable of transporting.;ﬁd sup-
porting colonists across interstellar space. Interstellar
spaceflight for a substantial community of colonists at
vae. must for any civilization be enormously expensive in
propulsion and shielding. At v<<c, the cost remains enormous
because the long transit times require elaborate life-support
systems. Contemporary colonles of mlO4 persons in c1slunar
" space (0'Neill, 1975, 1978) are estimated optlmlstlcally to
cost >>$10Il. Zven with genevous allowances for future tech-
nological progress a larger colony designed to traverse parsecs
safely might be argued to cost substantially more than the
available resources of the planet Earth (w$1013é¥DSS planetary
product). It is not clear that for either velocity regime,
colonization ventures to more distant targets would be cor-
respondingly more expensive. Except for extremely advanced
and long-lived technical societies, colonization is possible
only to the nearest star systems. Thus colonization is
initiated from the periphery of an empire for two reasomns.

First, the transit distances and times are shorter. Second,
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materials are not in such short supply and the launching
of colonization ventures would not place as unbearable a

strain on the outposts of the empire as on its central

worlds.,

8. Results

We now collect some relevant results of the pre-
'cedfﬁg"sectibns, apply numerical values, and address our-
selvés to the central question of whether the Earth should
have been visited during geological time by extraterrestrial

civilizations.
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The steady state number N of extant civilizations
more advanced than our own in the Milky Way Galaxy can be

written as

N = fL, (75)

where L. is the mean lifetime of galactic civilizations

in years and f£.is a factor which combines the rate of star
formation, the fraction of stars with planetary systems,
the number of ecologically suitable planets per such
system, che probability of the origin of life on a given
otherwise suitable planet, and the likelihood of the evolu-
tion of intelligence and technical civiliza??pna(for ex-
tensive discussions, see, for example, Shklovskii and Sagan,
1966; Sagan, 1973b). A conventional estimate, which

is, however, no more than a semi-informed guess, is £

lyr-l, However, in the case of colonization the

107
probability of the emefgence of intelligent life and
technical civilization on a given world approach unity

and this factor increases perhaps to f ~10 yr_l (Shklovskii

and Sagan, 1966, D. 451).
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Assuming stars in the Milky Way Galaxy to have
a mean separation of 1 parsec (= 3,26 light years), the mezn

‘distance between advanced civilizations is
A= 25z 10thm3 o s x 1oty 3. L (78

We here assume 250 billion stars in the Galaxy. Heﬁce-
forth, distances will be measured in parsecs and times
in years. With a conventiomal value (op. ¢it.) for in-
dependently érisan civilizations, of N = 106, A= 25 pec =82 1l.¥7.
Eq. (76) is based on a spherical distribution of stars in
the Gélaxy; but the ipaccuracies for distances larger'tban

the thickness of the Galaxy (v 100 pc) is still small enough

that we may neglect it in this problem.

For our density-dependent diffusion problem with
growth and saturation, we have found that: the velocity v

of the colonization front can be reprasented by

v =% (Dy) (77)

where-ﬁ is 2 dimensionless constant of order unity; D is
~a diffusion coefficisnc that, when muléiglied by the '
population density gradienc, yialds the correct outward
flux of popularion as it nears saturation, and v is the

population growth race. For cthe human population on che
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Earth today, v %10-2. In the centuries prior to 1750,
v was v6 x 1074 (Coale, 1974). In the late Pleistocene

7 or 1078,

y was much smaller still, perhaps 10~
We have found [}q. CZlﬂ from finite differences

in the standard m—diménéional diffusion-equation that the
'probability of diffusing to another planet AxX away in time

At is P = 2mD At/sz. This is in fact the probability of

the entire population emigrating to another solar system at

a distance Ax over an effective time At. This is in stricc
agreement with the behavior of a particle undergoing Brownian )

motion, Fowever, since the diffusion equation describes the

behavior of a distribution of particles, it is conceptually

useful to think of P as the expectation value of the fraction
of the population that will emigrate to another world at a
distance Ax in a time At. 1In the sense of an expectation

value, then, we define the specific emigratipn rate ¥ by

¥ = P/At = 2mD/Ax> . (78)

This gquantity describes the fraction of the population that
emigrates per unit time to the next solar system. Here, At
is the time interval between successive colonial ventures.

If the transit time exceeds this time interval then we
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substitute the transit time for At. Conversely, the problem
is paced by the time interval between successive coloniza-
tions for very fast transit times, so that even the extremely
unlikely contingency of faster-than-light travel (through
multiply-connected space in the vicinity of black hoies, say)
does not alter this analysis significantly.

It is impossiblé to~make a very reliable estimate
of ¥ for extraterrestrial civilizations. Very high wvalues
should be stupifyingly expensive. Very low values cannot
provide even short-term relief of population pressure at the
periphery of the civilization. In the third century B.C. the
Chin emperor approved a proposal of Hsu Fu to launch a
colonization mission "with several t@ousand young men and
maidens to go and look for the abodes of the immortals hidden
in the Eastern Ocean.” (Needham, 1971). The fleet of sailing -
ships was never heard from again and the emperor complained
bitterly about the cost., Over the following centuries a
number of further expeditions t& the Pacific Ocean to find
an elixer of immortality were mustered, but none on the scale
of the venture of Hsu Fu (op. cit.). All these expeditions
may have perished; alternmatively some may have colonized

Japan and have been the origin of the non-Ainu population

. -]
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there. At this time the total population of China was

7. The next major distant emigrations from East and

3 x 10
Northeast Asia were the Mongol invasions and the explora-
tion and trade by the Ming Navy in the Indian Ocean in the
1.

fifteenth century. These numbers give V¥ m10-7yr— . During

the eighteenth century European colonization of North

4yr-l (Potter, 1965). Proposals

America, ¥ was ~3 x 107
have been made recently for the launching into Earth orbit

of self-contained closed ecological systems with mlOa in-
habitants (0'Neill, 1975; 1978). This represents r\'1.0“603‘5

the population of the Earth., A very difficult undertaking in.
the next few centuries would be to launch one such Space

City into interétellar space evefy centﬁfy.- This gives

b4 mlO_gyr—l. We adopt 3 x 10”4yt >¥> 10-8yr'1, with a
bias to the smaller value for a younger interétellar

civilization,

The existence of abundant extra-solar planetary
systems seems very plausible but is still undemonstrated.
Presumably a civilization wishing to colonize the Earth
comes from an Earth-like world; although, since schemes have
been proposed to terraform Venus and Mars -~ that is, to

convert them from rather different environments to ones
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which resemble the Earzh (Sagan,-l960; Sagan, 1973¢) --
xenoforming the Earth into some rather differént environ-
ment might not be beyond the capabilities of an interstellar
spacefaring civilizzstion. We note that such xenoforming
will add to the waiting time for a colony to develop an
independent colonizing capability. Simple theoretical
models of the formation of planetary systems from solar

nebulae suggest that a wide variecy of planetary systems

can be formed depending on, for example, che initial mass
density distribution function of the nebula; in some schémes
terrestrial planets appearito be formed abundancly (Isaacman
and Sagan, 1975).. In this cass the distance betweaen Earth-
like planets is probably.f 3 pc (se= also Dole, 1964j. Hart
(1978,. 1979) has arguad that only an éxtremely unlikaly, sat

of circumstances has preserved the Earth's environment --

R

particularly abundant liquid water -~ £rom the opposing
threats of a runaway greenhouse effect and a global ice age.
These arguments ignore plzusible variations in some climatic

parameters and neglect negative faedback loops inm terrestrial

- -

climarclogy; we comsider them unlikely. But if they are wvalid

they incrsase AX possibly to ~300 oe. Accordingly, we will

1 . 2 = -2 - T 3 2 —— im =

allow Ax~ to range from 3 pe” &£o 107 pe®, with a praferrsd value
, ) )

cf 10 pe
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8 1

I1f we adopt m = 3, A% = 10 pc2, and ¥ = 10 "yr~

we find a typical value of the diffusion coefficient to be

8 2 -1 21 1

D=2%10" pe”“yr - =5 x 10 cm’sec” , an absolutely

enormous diffusion coefficient by planetary atmospheres

standards.

We are now ready to examine the apparent absence
of extraterrestrial colonies on the Earth. Let tmin be the
minimum time for the advanced technical civilization nearest
us in space to reach us at a diffusion wavefront velocity v.
Then v toin = A 1if g > s there should be no such

colonies, as observed, Consequently, there is a critical

lifetime for a spacefaring interstellar civilization

L, = tyio = MYV (79)

For the Earth to have been colonized, the colonial civiliza-
tion must have a lifetime in excess of Lc'

Combining eqs. (76)-(79) we find
L, = 3.3 % 107 (£/0.1)74{(v/107% (1/107%) ax?/10)] “*/Byrs. (80)

For comparison, we combine egs. (23), (24), (26), (76) and (78)

to obtain the critical lifetime for a thermal wave front
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with ¥ = 2 and find

-8/11 - -8, - -
L, = 1.3 x 1009¢£/0.1)"8/ M (ax?/10y 12 (/1078 =3/ M hons . (51
This is the case of strictly observed zero population growth.

2

Qur fres parameters, £, vy, Ax” and ¥ have normalized standard

values, already discussed, with distance measured in pe and

time in years,

We have now obtained the critical
1

lifatime L, for the mﬁ@siLc<<Y' (zero populatiom growth) and
) i .

Lc>>f' (nonilinear pcpulation diffusion with growth and
saturation). From eq. (80), we see that Lc increases as v

L in (80), we obtain a

decreases. When vy is set equal to Lc-
value for L, of 4.3 x 109 yrs when £, -¥ and AxX assume their
normalized standard vélues. Although (80) is not strictly

valid in this case, this value for L, suggests, as we in-
tuitively expect, & smooth tramsition betwWeen our two models,
i.e., as y decreaseas, Lc increases until it assumes the ZPG

value.

We sae that for che colonization wavefronc of the
nearest techmical civilization to have rezached the Earth,

the lifetime. of that civilization must exceed 30 million yrs.



for nonlinear diffusion with growth and saturation. Such

a civilization will have been intensely occupied in the
colonization of more than 200,000 planetary systems before
reaching the Earth, some 64 pc away. Many colonial empires,
of vast extent by terrestrial standards, may still Qccupy
only an insignificant volume of the Milky Way Galaxy, and

not embrace the nearest independently arisen technical

civilization whether it has colonial ambitions or not,

If strict ZPG is observed, Lc is of the order of

the age of the runiverse and it would be unlikely in the

extreme for us to observe such a_population. Varia;;ons in

f would almost certainly increase the critical lifetime while
variations in ¥ will have an almost negligible effect.
Theréfore, strict ZPG readily explains our failure to.observe
nearby extraterrestrial civilizations and we will confine our
remaining considerations to cases including population growth

and saturation.

Qur conclusions for the case of density-dependent
diffusion with population growth and saturation seem to be
interestingly insensitive to the choice of input parameters.

Reasonable variations in £, to allow for extensive colonization,



changes L, Dy a factor 3. We believe that 'y canmot be

4 -1

much larger than 10 'yr ~ to be comsistenc with the very
'.powerful population pressures which any colonial empire
mist have experienced earlier im 1ts history than the cime
0f extensive interstaellar colonization. (In addition, one
possible means of interstellar tranéport -- the ''genera-
tion-ship” im which a much later gemeration of colomists
arrives than that which originally set out -- imposes an
extreﬁaly strict regime of ZPG on the settlers.) sz might
" be as large as 103 pcz, meaning that the coloniéts must be
in the practice of searching comparatively large volumes of space be-
fore establishing a colony., V¥ cohceivabi& could be much

8 1

larger than 10 “yr ~, although values as large as those

typical for the European colomization of North America in the
eighteenth century seem prohibitive for interstellar space-~

2- 2 4

'yr-l

flight. But, even adopting Ax” = 103 pc” and ¥ = 3 x 10;
we £ind that L. m105_yr. Even with massive interstellar
colonization efforts, involving 10% of the base population
every ceuntury, the Earth would not have been visited unless

the colonizing civilization were very long-lived.
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The effective velocity of the colonization wave-

front is given by

6

v=1.2x107° [(v/107% (/1078 (ax?/10)] % peyx™t . (82)

Note from dimensional analysis that this is the only

combination of v, sz, and. ¥ which will make a velocity.

2

With nominal wvalues of v, Ax“ and ¥, the colonization wave-

" front has an effective wvelocity m10_6 pc 373:_1 -~
considerably slower even than the interstellar wvelocities

of the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft.
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9 10

Civilizations with liferimes ~10° to 10 7T,

on the other hand, could have colonized the Earth by now
aven if they originate some comsiderably greater distance
from us' within the Milky Way Galaxy. Howaveﬁ; for: reasons
which we have alréady mentioned -- dealing with the
evolution of such very advanced societies -- we belisve
that their mocivations for colonization may have altered ut-

terly, and that their science and technology may be extremely

different from anything we- can recognize or even imagine.

We have found that only techﬁical civilizations with
Lifetimes ~10° to 3 x 107 years could have inditiated a
colonial‘wavefrﬁnt which has reached the Eazrth from the
nearest techniczal civilization. The lifetimes of extra-
terrestrial technical. civilizations are, of course, highly
uncertain but many workers 'in this fisld have hypothesized
that only a tiny fracticm of civilizations suxvive beyond

10°

to 107 years (see, for example, Shklovskii and Sagan,
1966). In addition, there is the question of phase
relations in che evolution of technical civilizations. 1In

tha solar neighborhood theze éra,unlikaly to be many stars

wn

with habitable planets which are significantly older than

the sun, and we cerczinly expectT a substantizl waiting
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time -- perhaps ~ several times 109 yr -- for the
indigenous evolution of technical societies. There are
unlikely to be any colonizing civilizations in the solar

neighborhood >>3 x 10/ yr’éld.'

It may be useful to divide technical civilizations

into two categories: young (<<106 6

yr -old) and old (>>10
yr - old). 01d civilizations are unlikely to be colonial
powers in the sense we are describing. .Young civiliéétions
may be embarked on extensive colonial ventures but, -compared
to the volume of the Milky Way, these are of very limited
scope. There may be empires of tens or even hundreds of

thousands of worlds. .But it is implausible that a Galactic

Empire exists: there are simply too many worlds to conquer. .

The number of habitable planets in the Galaxy may
exceed the number of individuals on the Earth. Might the
political evolution of the Galaxy to some extent parallel
that of the Earth,in which individuals start out more or
less alone, and eventually form larger family groups, tribes,
city/states, nations, super-powers, and, perhaps eventually,
a single global state? In that case the Earth is at the

present time still in the situation of a lone individual --
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one who even wonders if there are any -other people at all.
The stage we have been deseribing in this paper, when there
are tens or hundreds of thousands.of colonial worlds for
each interstellar civilization, corresponds to a much

later stage in human history, roughly that of tﬁe‘first

. city/states. It is only at this point that groups interact.
Thus Star Wars, if there are any, occur at the level of

city/states -- Athens versus Sparta.

It is interesting to speculate on the likelihood
of such -encounters. For a random, uniform distribution of
civilizztions the probability p of an interaction would be-

have as
p < (d/0)° (83)

where:.fA is the mean distance between civilizations léq. (76ﬁ ’
and d is the ‘mean value of the wmaximum radius of an.interstellar

empire, i.e.,

d = vl =VO)EL ) (84)

Using (76), (79), (83) and (84) we find
. .
p 5 (L/Ly) (85)

for L < L,. Thus, the likelihood of two civilizations
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interacting is remote unless L ~ L.. (This argument de-
pends of course on a given civilization growing in a

manner that is independent of its neighbors.)
LEf the probability of Star Wars goes as L4; if
the canonical lifetime for contact to be just occurring
is 107 yrs; and if we were to imagine all civilizations at
L = 10° yrs, only 1 in ].Olb civilizations will be interacting.

Since N = 106, v100 will be interacting at a given time. If

L= 105 yrs, then 1 in 108 civilizations will be interacting

I NS .
andy for ¥ < 10 civilizations, there are no Star Wars.
Thus, if warfare is an illness which is outgrown in the first
5 o= . - . P .
107 years or so of the existence of a galactic civilization

then there never are interstellar conflicts.

The slow propagation speed of the colonization
wavefront does not exclude specific exploratory missions
to targets of particular astrophysical or biological
interest. The wavefront of the nearest colonial civiliza-
tion may be tens 6'1: even only a few pc from the Earth and
able to visit our solar system in relatively short times in
the likely case that starship wvelocities > 0.1 ¢ exist.

They have not visited the Earth because there is no motivation, no apparent
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way for a neighboring civilization to know of.the existence

of our developing interstellar civilization. This situation
may change in the relatively near future. Military and
astronomical radar systems and, especially, commercial tele-
vision have been for the last several decades gemerating an
unmistakable radio signature, now ~10 pc away, of the existence
of an émergent technical society in the vicinity of the Sun.

BRI

Dggeﬁding on the disposition of nearby civilizations, their
cgighies and their exploratory vessals, and hpw carefully they
ar%_examining the radio spectrum in eavesdropping mode, the
leéﬁage radiation from our technology may stimulate an explora-

tory mission from the nearest galactic civilization within the

next century or less.
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Figure 1. Thermal wave profiles for diffusion coeffi-

cients with a power law density dependence.
Figure 2. Wave of advance of the Bubonic Plague,

Figure 3., Travelling wave front for three model equations.
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