2,018 research outputs found

    Griffiths phase in the thermal quantum Hall effect

    Get PDF
    Two dimensional disordered superconductors with broken spin-rotation and time-reversal invariance, e.g. with p_x+ip_y pairing, can exhibit plateaus in the thermal Hall coefficient (the thermal quantum Hall effect). Our numerical simulations show that the Hall insulating regions of the phase diagram can support a sub-phase where the quasiparticle density of states is divergent at zero energy, \rho(E)\sim |E|^{1/z-1}, with a non-universal exponent z>1z>1, due to the effects of rare configurations of disorder (``Griffiths phase'').Comment: 4+ pages, 5 figure

    Anderson Transitions: Criticality, Symmetries, and Topologies

    Full text link
    The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed. We focus on the character of criticality as well as on underlying symmetries and topologies that are crucial for understanding phase diagrams and the critical behavior.Comment: 36 pages. Published in "50 Years of Anderson Localization", ed. by E. Abrahams (World Scientific, 2010); reprinted in IJMP

    Разработка мультиметодологического подхода к биопсии рака

    Get PDF
    Considering recent advances in the field of cancer diagnostics, the authors, researcher

    Light propagation through closed-loop atomic media beyond the multiphoton resonance condition

    Get PDF
    The light propagation of a probe field pulse in a four-level double-lambda type system driven by laser fields that form a closed interaction loop is studied. Due to the finite frequency width of the probe pulse, a time-independent analysis relying on the multiphoton resonance assumption is insufficient. Thus we apply a Floquet decomposition of the equations of motion to solve the time-dependent problem beyond the multiphoton resonance condition. We find that the various Floquet components can be interpreted in terms of different scattering processes, and that the medium response oscillating in phase with the probe field in general is not phase-dependent. The phase dependence arises from a scattering of the coupling fields into the probe field mode at a frequency which in general differs from the probe field frequency. We thus conclude that in particular for short pulses with a large frequency width, inducing a closed loop interaction contour may not be advantageous, since otherwise the phase-dependent medium response may lead to a distortion of the pulse shape. Finally, using our time-dependent analysis, we demonstrate that both the closed-loop and the non-closed loop configuration allow for sub- and superluminal light propagation with small absorption or even gain. Further, we identify one of the coupling field Rabi frequencies as a control parameter that allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure

    Universal time-evolution of a Rydberg lattice gas with perfect blockade

    Full text link
    We investigate the dynamics of a strongly interacting spin system that is motivated by current experimental realizations of strongly interacting Rydberg gases in lattices. In particular we are interested in the temporal evolution of quantities such as the density of Rydberg atoms and density-density correlations when the system is initialized in a fully polarized state without Rydberg excitations. We show that in the thermodynamic limit the expectation values of these observables converge at least logarithmically to universal functions and outline a method to obtain these functions. We prove that a finite one-dimensional system follows this universal behavior up to a given time. The length of this universal time period depends on the actual system size. This shows that already the study of small systems allows to make precise predictions about the thermodynamic limit provided that the observation time is sufficiently short. We discuss this for various observables and for systems with different dimensions, interaction ranges and boundary conditions.Comment: 16 pages, 3 figure

    Multifractality of wavefunctions at the quantum Hall transition revisited

    Get PDF
    We investigate numerically the statistics of wavefunction amplitudes ψ(r)\psi({\bf r}) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of ψ2|\psi|^2 is log-normal, so that the multifractal spectrum f(α)f(\alpha) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.Comment: 4 pages Late

    Non-adiabatic scattering of a classical particle in an inhomogeneous magnetic field

    Get PDF
    We study the violation of the adiabaticity of the electron dynamics in a slowly varying magnetic field. We formulate and solve exactly a non-adiabatic scattering problem. In particular, we consider scattering on a magnetic field inhomogeneity which models scatterers in the composite-fermion theory of the half-filled Landau level. The calculated non-adiabatic shift of the guiding center is exponentially small and exhibits an oscillatory behavior related to the "self-commensurability" of the drifting cyclotron orbit. The analytical results are complemented with a numerical simulation.Comment: 4 pages REVTEX, 3 figures include

    Where are they all from? - sources and sustainability in the ornamental freshwater fish trade

    Get PDF
    The global trade in ornamental fish involves c. 125 countries worldwide and is worth c. US $15-30 billion each year. This total is dominated (90%) by freshwater fishes, most of which are sourced from breeding facilities located in developing countries, typically in Asia or South America, but also in Israel, USA and Europe. Some fish are obtained from natural (wild) sources in Asia and South America, but the exact percentage of wild-caught fish is difficult to quantify given a lack of reliable data. Although c. 1000 species of freshwater fishes are widely available (from a total of > 5300 on sale), the most dominant freshwater fishes in the market comprise only 30 species from the orders Cyprinodontiformes, Perciformes, Characiformes and Siluriformes. In this perspectives review, illustrative example case studies of wild-fish collecting (Barcelos and Rio Xingu, Brazil) and breeding projects (Java, Indonesia) are described. In addition, wild-collecting expeditions to West Papua, Indonesia are discussed, focused on discovering novel species of rainbowfish (Melanotaeniidae) for breeding in captivity. Sustainability of the aquarium industry is considered in its broadest sense. The aquarium industry has been portrayed as both a major threat to natural ecosystems, but also as being part of the solution in terms of helping to maintain species when they have gone extinct in the wild or offering an income to impoverished citizens who might otherwise engage in much more destructive practices

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential
    corecore