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Nonadiabatic scattering of a classical particle in an inhomogeneous magnetic field

F. Evers, A. D. Mirlin,* D. G. Polyakov,† and P. Wo¨lfle
Institut für Theorie der Kondensierten Materie, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

~Received 14 July 1998!

We study the violation of the adiabaticity of the electron dynamics in a slowly varying magnetic field. We
formulate and solve exactly a nonadiabatic scattering problem. In particular, we consider scattering on a
magnetic field inhomogeneity that models scatterers in the composite-fermion theory of the half-filled Landau
level. The calculated nonadiabatic shift of the guiding center is exponentially small and exhibits an oscillatory
behavior related to the ‘‘self-commensurability’’ of the drifting cyclotron orbit. The analytical results are
complemented with a numerical simulation.@S0163-1829~98!08548-8#
m
r-
l

s
d
th

ti
ug
tiv
lue
t
d
th
la
e

ta
ar
s
l
uc

a
h
r
ib
h
o

io
e
e
o

v
a

en
g,

ld
-

ed
o-
s

s
The
pro-
ple-
ical

und
ron
-
-

by
it,

on

he
tic
ce
ken

cle

ing
ne-

t

The dynamics of particles moving in a spatially rando
magnetic field~RMF! B(r ) has been a subject of conside
able interest in the past few years. The particular appea
the subject is due to its relevance to a number of model
strongly interacting disordered electron systems in two
mensions. One of the most prominent examples is
composite-fermion description1 of a half-filled Landau level.
Within this approach, the electron liquid in a strong magne
field is mapped—by means of a Chern-Simons ga
transformation—to a fermion gas subject to a weak effec
magnetic field. Precisely at half-filling, the expectation va
of the Chern-Simons gauge field compensates the effec
the external magnetic field. The RMF appears in this mo
after taking static disorder into account: fluctuations of
local filling factor due to screening of the random sca
potential yield a local mismatch between the gauge and
ternal magnetic fields. A number of observations2 of Fermi-
surface features near half-filling give strong experimen
support to the model of the effective magnetic field. Ap
from the composite-particle models involving fictitiou
fields, two-dimensional~2D! electron systems with a rea
RMF can be directly realized in semiconductor heterostr
tures by attaching to the latter superconducting3 or
ferromagnetic4,5 overlayers.

The peculiarity of transport properties of 2D electrons in
random fieldB(r ) shows up most distinctly in systems wit
smoothinhomogeneities. The case of long-range disorde
most important also experimentally—since the compress
state in a half-filled Landau level is observed in hig
mobility samples. In the latter, a large correlation radius
potential fluctuations,d, is fixed by a wide ‘‘spacer’’ be-
tween the electron gas and the doped layer containing
ized impurities. Likewise, inhomogeneities of the RMF cr
ated by the ferromagnetic overlayers in Refs. 4 and 5 app
to be fairly long range. In the composite-fermion model
the half-filled Landau level, the large value ofd ~as com-
pared to the interelectron distance! allows us to ignore, in the
first instance, the quantum interference of scattered wa
and describe the electron kinetics as purely classical. Qu
tum localization effects become crucial either on expon
tially long scales or at strong deviations from half-fillin
thus motivating us to consider aclassicalparticle subject to
the RMF.
PRB 580163-1829/98/58~23!/15321~4!/$15.00
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This paper is closely related to the previous study6 of the
electron kinetics in the RMF. The conductivity in the fie
B(r )5B̄1dB(r ) in the limit of strong homogeneous com
ponentB̄ was shown in Ref. 6 to be completely determin
by weaknonadiabaticprocesses in scattering on the inhom
geneitiesdB(r ) ~see also Refs. 7 and 8, where problem
were considered!. A key ingredient of this transport theory i
the nonadiabatic dynamics on the microscopic scale.
purpose of the present paper is to study the microscopic
cesses of the nonadiabatic scattering in detail by com
menting the analytical arguments with results of a numer
simulation.

To this end we formulate asingle-scattering problem: we
introduce a weak homogeneous gradient of the backgro
magnetic field and consider the interaction of an elect
with an ‘‘impurity’’ modeled by a spatially localized pertur
bationdB(r ). Far away from the impurity the electron mo
tion is a slow van Alfve´n drift along straight lines—which
are contours of constant magnetic field—accompanied
rapid cyclotron gyrations. We consider the adiabatic lim
where the shift of the guiding center during one cyclotr
period d, is much smaller than the sized of the impurity,
d/d@1. In this case, the particle continues to drift along t
lines of constant field, which is a manifestation of adiaba
invariance. A weak violation of the adiabatic invarian
leads to a small shift, after the scattering process has ta
place, of the magnetic field contour along which the parti
continues its drift. It is this shift,Dr, that will be studied
below, both analytically and numerically. The correspond
effect in a system with many impurities governs the mag
toconductivity, as discussed in Ref. 6.

In terms of the complex coordinatez5x1 iy , the equa-
tion of motion at the energymvF

2/2 in our scattering problem

readsz̈5 iV(z) ż, where

V~z!5vcF11e
y

Rc
1W~z!G , ~1!

vc5eB̄/mc, B̄ is the background field aty50, Rc
5vF /vc , the slopee yields a finite velocity of the inciden
particle inx direction, andW(z) is a ‘‘scattering potential.’’
We assume thate!1. The guiding center coordinatey aver-
aged over the cyclotron orbit,r5^y&c , plays the role of an
15 321 ©1998 The American Physical Society
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15 322 PRB 58BRIEF REPORTS
impact parameter. The particle entering the system atx5
2` with the initial condition limx→2`^y&c5r i will leave it
at x5` along the trajectory witĥy&c5r i1Dr, whereDr
is the desired nonadiabatic shift. In order to analyze the s
tering problem analytically we assume the impurity field
be weak,W!1. Expanding the coordinatez in powers ofW:
z5z01z11 . . . , weconcentrate on the first-order termz1.

The solutiony0 in the absence of the impurity can b
written in an implicit form for the initial conditionsz(0)
50, ż(0)5 ivF as t(y0)5vc

21*0
y0 /RcdYD21/2(Y), where

D(Y)512Y2@11 (e/2) Y#2. The coordinatey0 is confined
to the regiony2<y0<y1 , wherey6 /Rc5(A162e21)/e,
and is periodic with the period 2ut12t2u[2p/v, where
t65t(y6). The velocity in x direction, ẋ052vc(y0

1ey0
2/2Rc), may be integrated to givex05^ ẋ0&ct1j, where

j(t) is also periodic with the frequencyv. The leading terms

in the small-e expansion are:̂ẋ0&c5
e

2
vF ,

j5Rc@~cosvt21!2e~sinvt1 1
4 sin 2vt !

1O~e2!], ~2!

y05Rc@sinvt2 3
4 e1e~cosvt2 1

4 cos 2vt !

1O~e2!], ~3!

andv5vc1O(e2). To find y1, we integrate the equation o
motion for x1 once and use the relationẋ1ẋ01 ẏ1ẏ050 fol-
lowing from energy conservation, which yields a first-ord
differential equation fory1 with periodic coefficients

ẏ0ẏ12 ÿ0y15vcẋ0E
0

t

dt8W@z0~ t8!# ẏ0~ t8!. ~4!

For each half-period between the turning pointst5t6 , at
which ẏ0 changes sign, the solution of Eq.~4! can be repre-
sented in the form

y1~ t !5vcẏ0~ t !E
0

t

dt8K~ t8!E
0

t8
dt9W@z0~ t9!# ẏ0~ t9!. ~5!

Here the factorK(t)5 ẋ0(t)/ ẏ0
2(t) behaves singularly as (t

2t6)22 in the vicinity of t6 . Matching two branches o
y1(t) across the turning point requires that the contour of
t8 integration in Eq.~5! be displaced into the complex plan
so as to pass round the singularity on the real axis@since the
term (t82t6)21 is absent in the integrand, the contour c
be shifted in either half-plane#. This corresponds to the con
traction * t62t

t61tdt(t2t6)22→22t21 at t→0. With this

choice of the contour of integration, Eq.~5! gives the sought
solution at allt.

To extract the non-adiabatic shift from Eq.~5!, we ob-
serve that the integral overt9 converges to a constant at larg
t8 while ^ ẏ0&c50, so that the averageDr5^y1(t→`)&c
2^y1(t→2`)&c is given by

Dr5aI , I 5E
2`

`

dtW@z0~ t !# ẏ0~ t !, ~6!
t-

r

e

wherea(e)5vc^ ẏ0(t)*0
t dt8K(t8)&c is expressed in terms o

the unperturbed solution. Ate→0 the constanta→21.
Note that, apart from the shiftDr, the asymptotics of Eq.~5!
at large t contains an oscillating term2eIvct cosvct, the
amplitude of which diverges linearly with growingt. This
divergency is an artifact of the perturbation expansion inW
and reflects the fact that the shiftDr is accompanied by the
change of the frequency (evc /Rc)Dr. This asymptotics
could have been equivalently used to findDr52I .

In evaluatingI we first assume, for simplicity, thatW(z)
depends onx only, which allows us to expandI as

I 5E
2`

`

dt(
n

1

n!
]x

nWS e

2
vFt D jn~ t !ẏ0~ t !. ~7!

SinceW@(e/2) vFt# is a smooth function oft on the scale of
v21, the leading contribution toI comes from taking the firs
harmonic of the integrand—higher harmonics will involv
exponentially smaller Fourier components ofW@(e/2 )vFt#.
This yields, after integration by parts and resummation,

I .2vFReFA~e!E
2`

`

dteivctWS e

2
vFt D G , ~8!

A~e!5
1

Rc
E

0

2p/vc dt

2p
expS 2

2i j~ t !

eRc
2 ivct D ẏ0~ t !. ~9!

The integral in Eq.~9! can be evaluated ate!1 by the
saddle-point method to give

Dr522vFAe

p
cosS 2

e
2

p

4 D E
2`

`

dt cosvctWS e

2
vFt2RcD .

~10!

This equation is a parametrically exact solution of the sc
tering problem ate→0. It expresses the nonadiabatic shift
terms of the asymptotics of the Fourier transform of t
smooth functionW—thus demonstrating explicitly the expo
nential smallness ofDr. The parameter that governs the e
ponential falloff ofDr is d/d@1, whered is a characteristic
scale of variation ofW andd5peRc is the shift of the guid-
ing center after one period of the cyclotron rotation, wh
the ratiod/Rc may be arbitrary. Though the limit of a smoot
inhomogeneity on the scale ofRc is historically most closely
associated with the notion of adiabaticity, the parame
d/Rc plays no role in Eq.~10!. It is worth noting that the
preexponential factor given by the first line of Eq.~10! is a
nonanalytic function of the small parametere and, moreover,
happens to oscillate wildly ase→0. These oscillations are
due to the commensurability of two length scalesRc andd.
Remarkably, the series of the geometric resonances that
stitute the oscillations is associated with the properties of
unperturbed solution~‘‘self-commensurability’’! and not
with the shape of the scatterer. Note that to get the osc
tions one has to sum up all terms in the expansion~7! even if
W is smooth on the scale ofRc . Another peculiar feature o
the nonadiabatic shift is related to its sensitivity to the ph
f of the cyclotron rotation of the incident electron. Speci
cally, changing the position of the scatterer byDx leads to
the oscillations ofDr(f)5Drmcos(f2f0)}*2`

` dtcos(vct
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1f)W@(e/2) vFt#, wheref52pDx/d, so that the shift van-
ishes periodically with varying initial conditions.

In the composite-fermion problem, a charged impurity
cated the distanced from the plane occupied by the electro
gas creates the axially symmetric perturbationW(r )
5W0d3@(r2R)21d2#23/2. We choose the impurity position
R5(0,r i), so thatr i has the meaning of the impact param
eter with which the guiding center is incident on the imp
rity. Extracting the first-order Fourier component
W@z0(t)# in the same way as in Eqs.~8!,~9!, we get

I .2ReE
0

2p/vc dt

2p
e22i j~ t !/eRc2 ivct ẏ0~ t !vc

3E
2`

`

dt8eivct8WF e

2
vFt8,y0~ t !G . ~11!

The function W in this equation has branch points att8
5ts8(t), wherets8(t)56(2i /evF)Ad21@y0(t)2r i #

2, which
determines the exponentially small value of the integral o
t8. Specifically, the second line in Eq.~11! reads
A2pW0(2pd/d)3@vcuts8(t)u#

23/2exp@2vcuts8(t)u#. The re-
maining integral overt can be done by the saddle-poi
method. The cumbersome general expression reduces t

Dr.8pW0~r i1d̃!S Rcd

d2 D 1/2

e2r i /d̃

3cosf cosS 2d

ed̃
2

p

4 D expS 22p
d̃

d
D ~12!

in the limit of a long-range impurity potential, whend,ur i u
@Rc . Hered̃5(d21r i

2)1/2. In the opposite case, whenRc is
larger than bothd and ur i u, we get

Dr.8pW0

d2

d
cosf cos

2

e
expS 22p

d

d D . ~13!

The last three factors in Eqs.~12!,~13! reflect the features o
the nonadiabatic shift discussed above: the expone
smallness, the oscillations with changinge, and the oscilla-
tory dependence on the phasef. Note that all the formulas
above imply that the drift trajectory is only slightly perturbe
by W(r ).

Now let us turn to a numerical simulation. A typical tra
jectory resulting from the numerical integration of Eq.~3! is
shown in Fig. 1. Though the perturbation of the drift traje
tory is seen to be large in this particular example, the n
adibatic shift is almost invisible. The inset to Fig. 2 sho

FIG. 1. Typical trajectory of a particle scattered on a ‘‘magne
impurity’’ @Eq. ~1!#. The lines of constant magnetic fieldB(r ) are
shown. The strength of the impurityW052.2.
-

-

r

ial

-
-

the periodic dependence of the shift on the phasef, which
agrees with Eq.~12!. The main panel clearly demonstrate
the adiabatic character of the scattering atd̃/d@1: the mag-
nitude of the oscillationsDrm plotted againstd21 is seen to
fall off exponentially, also as predicted by Eq.~12!. The
slopec of the exponential decay lnDr522pcd̃/d is found to
be 1.3, which is somewhat larger than the valuec51 fol-
lowing from Eq.~12!. This is because the perturbation of th
drift trajectory is not negligible in this case. No oscillation
with changinge could be reliably seen in Fig. 2, whic
should also be ascribed to their smearing due to the curva

FIG. 2. Amplitude of the nonadiabatic shiftDrm as a function
of d52pvd /v for a strong impurity:W052.2. The solid line is a

fit Drm}exp@21.332pd̃/d#. Inset: ShiftDr as a function of the

phase f for different values of the parameter 2pd̃/d
54.8(s),5.8(h),7.8(L).

FIG. 3. Nonadiabatic shift for a weak impurity (W050.07) at
r i /d50.420.9 and largeRc /d51.522.5. The solid line is a fit
Drm}exp(22pd/d). Inset: Oscillations ofDrm as a function of
Rc /d.
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of the trajectory. Indeed, the commensurability ofRc andd
cannot be maintained in the whole region of interaction if
drift trajectory is strongly perturbed, as clearly illustrated
Fig. 1. The nonadiabatic shift at a smaller amplitude of
interactionW0 is shown in Fig. 3. In this case, the perturb
tion of the trajectory was weak, and the particle was ess
tially drifting right ‘‘through the impurity’’ with a small im-
pact parameterr i,d,Rc . DecreasingW0 narrows the range
of the numerical simulation but clearly reveals the oscillato
behavior ofDrm with changinge. The exponential depen
dence in Fig. 3 is fitted very well bye22pd/d @in accordance
with Eq. ~13!# with no fitting parameter in the exponent. Th
oscillations ofDrm with changingRc /d ~inset of Fig. 3!
have a period close to 1/2 and are in good agreement
the analytical predictionDrm}ucos(2pRc /d) u.

In conclusion, we have studied the violation of the ad
baticity of the electron dynamics in a slowly varying ma
netic field. We formulated a scattering problem which h
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been solved exactly. As a particular example we conside
scattering on a single ‘‘magnetic impurity’’ which models
scatterer in the composite-fermion theory of the half-fill
Landau level. The nonadiabatic shift of the guiding cente
exponentially small and exhibits oscillations withRc /d,
whereRc is the cyclotron radius, andd the shift of the guid-
ing center along the drift trajectory after one cyclotron p
riod. The oscillations are related to the se
commensurability of the drifting cyclotron orbit. Th
analytical results are in full agreement with the numeri
simulation. A detailed numerical study of the transport pro
erties of the fermions in a random magnetic field will
presented elsewhere.
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