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Nonadiabatic scattering of a classical particle in an inhomogeneous magnetic field

F. Evers, A. D. Mirlin* D. G. Polyakov! and P. Wifle
Institut fir Theorie der Kondensierten Materie, Universitaarlsruhe, 76128 Karlsruhe, Germany
(Received 14 July 1998

We study the violation of the adiabaticity of the electron dynamics in a slowly varying magnetic field. We
formulate and solve exactly a nonadiabatic scattering problem. In particular, we consider scattering on a
magnetic field inhomogeneity that models scatterers in the composite-fermion theory of the half-filled Landau
level. The calculated nonadiabatic shift of the guiding center is exponentially small and exhibits an oscillatory
behavior related to the “self-commensurability” of the drifting cyclotron orbit. The analytical results are
complemented with a numerical simulatig®0163-182@08)08548-§

The dynamics of particles moving in a spatially random  This paper is closely related to the previous sfudfythe
magnetic field(RMF) B(r) has been a subject of consider- electron kinetics in the RMF. The conductivity in the field
able interest in the past few years. The particular appeal a8(r)=B+ §B(r) in the limit of strong homogeneous com-

the subject is due to its relevance to a number of models GjonentB was shown in Ref. 6 to be completely determined
strongly interacting disordered electron systems in two diyy weaknonadiabaticprocesses in scattering on the inhomo-
mensions. One of the most prominent examples is thgeneitiessB(r) (see also Refs. 7 and 8, where problems
composite-fermion descriptiéru)f a half-filled Landau level. \vere considered A key ingredient of this transport theory is
Within this approach, the electron liquid in a strong magneticthe nonadiabatic dynamics on the microscopic scale. The
field is mapped—by means of a Chern-Simons gauggurpose of the present paper is to study the microscopic pro-
transformation—to a fermion gas subject to a weak effectivecesses of the nonadiabatic scattering in detail by comple-
magnetic field. Precisely at half-filling, the expectation valuementing the analytical arguments with results of a numerical
of the Chern-Simons gauge field compensates the effect imulation.

the external magnetic field. The RMF appears in this model To this end we formulate singlescattering problem: we
after taking static disorder into account: fluctuations of theintroduce a weak homogeneous gradient of the background
local filling factor due to screening of the random scalarmagnetic field and consider the interaction of an electron
potential yield a local mismatch between the gauge and extith an “impurity” modeled by a spatially localized pertur-
ternal magnetic fields. A number of observatfoog Fermi-  bation 6B(r). Far away from the impurity the electron mo-
surface features near half-filing give strong experimentafion is @ slow van Alfve drift along straight lines—which
support to the model of the effective magnetic field. Apart2€ contours of constant magnetic field—accompanied by
from the composite-particle models involving fictitious rapid cyclotron gyrations. We consider the adiabatic limit,

fields, two-dimensional2D) electron systems with a real where the shift of the guiding center during one cyclotron

RMF can be directly realized in semiconductor heterostrucPerIOd 4, is much smaller than the siakof the impurity,

. : d/6>1. In this case, the particle continues to drift along the
tures by attaching to the latter superconductingr ; . S . X . .
a5 lines of constant field, which is a manifestation of adiabatic
ferromagneti¢® overlayers.

o . . _invariance. A weak violation of the adiabatic invariance
The peculiarity of transport properties of 2D electrons in 8o,y 1 4 small shift, after the scattering process has taken
random fieldB(r) shows up most distinctly in systems with

) - ) .place, of the magnetic field contour along which the particle
smoothinhomogeneities. The case of long-range disorder iggntinues its drift. It is this shiftAp, that will be studied
most important also experimentally—since the compressiblge|g, hoth analytically and numerically. The corresponding
state in a half-filled Landau level is observed in high-effect in a system with many impurities governs the magne-
mobility samples. In the latter, a large correlation radius ofisconductivity, as discussed in Ref. 6.

potential fluctuationsd, is fixed by a wide ‘“spacer” be- In terms of the complex coordinate=x+iy, the equa-

tween the electron gas and the doped layer containing 104 of motion at the energgu2/2 in our scattering problem
ized impurities. Likewise, inhomogeneities of the RMF cre-

ated by the ferromagnetic overlayers in Refs. 4 and 5 appeé?adsz:'ﬂ(z)z’ where
to be fairly long range. In the composite-fermion model of

the half-filled Landau level, the large value df(as com- A2)=w
pared to the interelectron distan@lows us to ignore, in the ¢
first instance, the quantum interference of scattered waves  __ _

and describe the electron kinetics as purely classical. Quams,=€eB/mc, B is the background field aty=0, R,
tum localization effects become crucial either on exponen=vg/w., the slopee yields a finite velocity of the incident
tially long scales or at strong deviations from half-filling, particle inx direction, andW(z) is a “scattering potential.”
thus motivating us to considerdassicalparticle subject to We assume that<1. The guiding center coordinajeaver-
the RMF. aged over the cyclotron orbip=(y)., plays the role of an
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impact parameter. The particle entering the system=at  wherea(e€)=w(yo(t)[5dt'K(t')), is expressed in terms of

— with the initial condition lim_. _..(y)c=p; will leave it the unperturbed solution. At—0 the constanty— —1.

atx=c along the trajectory wity).=p;+Ap, whereAp  Note that, apart from the shiftp, the asymptotics of Eq5)

is the desired nonadiabatic shift. In order to analyze the scalt |arget contains an oscillating term- el wct coswt, the

tering problem analytically we assume the impurity field to ampjitude of which diverges linearly with growirtg This

be weakW<1. Expanding the coordinatein powers ofW:  gjvergency is an artifact of the perturbation expansioin

Z=25+z;+ ..., weconcentrate on the first-order tem).  and reflects the fact that the shiffp is accompanied by the
The solutiony, in the absence of the impurity can be change of the frequencyef,/R;)Ap. This asymptotics

written in an implicit form for the initial conditiong(0) could have been equivalently used to fikg= —1.

=0, 2(0)=ive as t(yp)=wg [}°'%dYD 1Y), where In evaluatingl we first assume, for simplicity, thaW/(z)

D(Y)=1-Y?[1+ (€/2) Y]?. The coordinatey, is confined depends ox only, which allows us to expanidas

to the regiony _<ygy<y., wherey. /R,;=(J1*2e—1)/e,

and is periodic with the period |2, —t_|=2n/w, where I—Jm atS ia”w(f
_ TR et ¥ - nt "\ 2

t.=t(y.). The velocity in x direction, X, wc(Yo © N

+ey3/2R.), may be integrated to givey=(Xo)ct + &, where

¢ S - SinceW[ (e/2) vet] is a smooth function of on the scale of
¢(t) is also periodic with the frequeremy. The leading terms o~ 1, the leading contribution tbcomes from taking the first

in the smalle expansion are{Xy)c== v, harmonic of the integrand—higher harmonics will involve
2 exponentially smaller Fourier components\Wf (e/2 )ugt].
This yields, after integration by parts and resummation,

th) E"()yo(t). @)

é=R(coswt—1)— e(sinwt+ 3sin 2wt)

+0(€)], 2 |:2UFR6{A(6) fidte‘“’ctW(gvpt)

1 (27lecdt 2iE(t) .
A(G)ZR_CJO ZGX[{—E—RC—I(UC'[)yO(t). 9)

; ®

Yo=Rsinwt— 2 e+ e(coswt— :cos 2wt)

+0(€7)], ()
andw=w.+0(€?). To findy;, we integrate the equation of The integral in Eq.(9) can be evaluated at<1 by the
motion forx, once and use the relationx,+Yy,yo=0 fol-  Saddle-point method to give
lowing from energy conservation, which yields a first-order )
: : ; X o - p © E
differential equation fory; with periodic coefficients Ap=—2v, \/;cos<—— ’ f dtCOSthW(Eth— Rc)-

S .t : (10
YoY1—YoY1= wcxofodtlw[zo(t’)]yo(t')- 4
This equation is a parametrically exact solution of the scat-
For each half-period between the turning poibtst., at  tering problem at—0. It expresses the nonadiabatic shift in
which y, changes sign, the solution of E@) can be repre- terms of the asymptotics of the Fourier transform of the
sented in the form smooth functiorW—thus demonstrating explicitly the expo-
nential smallness ok p. The parameter that governs the ex-
. L R et o ponential falloff ofAp is d/§>1, whered is a characteristic
Y1(t)=wCYO(t)fodt K(t )fo dt"W[zo(t")1yo(t"). (5 scale of variation ofV and 6= eR, is the shift of the guid-
ing center after one period of the cyclotron rotation, while
Here the factom(t)zﬁ(o(t)/yg(t) behaves singularly ag ( the ratiod/R. may be arbitrary. Though the limit of a smooth
—t.)"2 in the vicinity of t. . Matching two branches of inhomogeneity on the scale B is historically most closely
y1(t) across the turning point requires that the contour of thexssociated with the notion of adiabaticity, the parameter
t’ integration in Eq(5) be displaced into the complex plane d/Rc plays no role in Eq(10). It is worth noting that the
s0 as to pass round the singularity on the real psiisce the ~ Preexponential factor given by the first line of H40) is a
term (t'—t.) ! is absent in the integrand, the contour cannonanalytic function of the small parameteand, moreover,
be shifted in either half-pladeThis corresponds to the con- zapptenti to oscillate W"gl'?(tas?t\?v. -I]hestehoscg:l%isﬁon;éare
; tetrgey o V-2 5 -1 ; i ue to the commensurability of two length scalesand 6.
trac.tlon ftr‘Tdt(t t=) ,_) 27? at T_?O' With this Remarkably, the series of the geometric resonances that con-
choice of the contour of integration, E() gives the sought it te the oscillations is associated with the properties of the
solution at allt. o unperturbed solution(“self-commensurability’y and not
To extract the non-adiabatic shift from E), we ob- ity the shape of the scatterer. Note that to get the oscilla-
serve that the integral ovéf converges to a constant at large tjons one has to sum up all terms in the expangireven if

t' while (yo).=0, so that the averagdp=(y;(t—=)).  Wis smooth on the scale &.. Another peculiar feature of

—(y1(t— —»)). is given by the nonadiabatic shift is related to its sensitivity to the phase
¢ of the cyclotron rotation of the incident electron. Specifi-
Ap=al, |:f AWl Zo(1) TYo(1), 6 cally, changing the position of the scattererfby leads to
p=a —w WLzo(1¥o(t ©) the oscillations ofAp(¢)=Ap,coslp— ¢p)= S~ .dtcost
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FIG. 1. Typical trajectory of a particle scattered on a “magnetic
impurity” [Eq. (1)]. The lines of constant magnetic fieR(r) are
shown. The strength of the impurity/,=2.2.

+ )W (e/2) vet], wheredp=2mwAx/ 8, so that the shift van-
ishes periodically with varying initial conditions.

In the composite-fermion problem, a charged impurity lo-
cated the distance from the plane occupied by the electron
gas creates the axially symmetric perturbatiofi(r)
=W,d[(r — R)?+d?] %2 We choose the impurity position
R=(0,p;), so thatp; has the meaning of the impact param-
eter with which the guiding center is incident on the impu-
rity. Extracting the first-order Fourier component of
W[ zy(t)] in the same way as in Eq),(9), we get

2mloe dt

I22Ref
0

xf dt’efect’'w

e 2i¢(t)/ eR— it yO(t) we

ngt',yom}. (11

The function W in this equation has branch points &t
=t/(t), wheret/(t) = = (2i/evg) Vd?+[yo(t) — pi 1%, which
determines the exponentially small value of the integral ove
t’. Specifically, the second line in Eq(1l) reads
V27Wo(27d/ 6) 3 we|t (1)1~ ¥%exd — odti(t)]. The re-
maining integral overt can be done by the saddle-point
method. The cumbersome general expression reduces to

d 1/2 ~
e Pi /d

=
d
)exp( —2775) (12

in the limit of a long-range impurity potential, whet|p;|
>R, . Hered= (d?+ p?)*2 In the opposite case, whéty, is
larger than bothd and|p;|, we get

3

Ap=87Wo(p;+d)

2d =

X CoS¢ cos( 572

€

2

d 2
ApszWogcosd) cosg exp< (13

_277_

o
The last three factors in Eq&l2),(13) reflect the features of

the nonadiabatic shift discussed above: the exponential

smallness, the oscillations with changiagand the oscilla-
tory dependence on the phage Note that all the formulas
above imply that the drift trajectory is only slightly perturbed
by W(r).

Now let us turn to a numerical simulation. A typical tra-
jectory resulting from the numerical integration of E@) is
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FIG. 2. Amplitude of the nonadiabatic shiftp,, as a function
of 6=2mv4/w for a strong impurityWy=2.2. The solid line is a
fit Apnocexd—1.3x27d/8]. Inset: ShiftAp as a function of the

phase ¢ for different values of the parameter w8/é
=4.8(0),5.8(0),7.8(C).

the periodic dependence of the shift on the phasevhich
agrees with Eq(12). The main panel clearly demonstrates

the adiabatic character of the scatteringia#>1: the mag-
nitude of the oscillationd p,, plotted against ! is seen to
fall off exponentially, also as predicted by E@L2). The

slopec of the exponential decay lhp=—2mcd/§is found to
be 1.3, which is somewhat larger than the vatisel fol-
lowing from Eq.(12). This is because the perturbation of the
drift trajectory is not negligible in this case. No oscillations
with changinge could be reliably seen in Fig. 2, which
should also be ascribed to their smearing due to the curvature
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FIG. 3. Nonadiabatic shift for a weak impurity\(;=0.07) at

shovyn in Fig. 1. Though_the perturk_)ation of the drift trajec-p, /d=0.4—0.9 and largeR./d=1.5-2.5. The solid line is a fit
tory is seen to be large in this particular example, the nonap «<exp(—27d/é). Inset: Oscillations ofAp,, as a function of
adibatic shift is almost invisible. The inset to Fig. 2 showsR,/§.
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of the trajectory. Indeed, the commensurabilityRiffand §  been solved exactly. As a particular example we considered
cannot be maintained in the whole region of interaction if thescattering on a single “magnetic impurity” which models a
drift trajectory is strongly perturbed, as clearly illustrated byscatterer in the composite-fermion theory of the half-filled
Fig. 1. The nonadiabatic shift at a smaller amplitude of thel andau level. The nonadiabatic shift of the guiding center is
interactionW, is shown in Fig. 3. In this case, the perturba- exponentially small and exhibits oscillations witR; /5,

tion of the trajectory was weak, and the particle was essenyhereR; is the cyclotron radius, and the shift of the guid-

tially drifting right “through the impurity” with a small im-  ing center along the drift trajectory after one cyclotron pe-
pact parametep;<d,R;. DecreasingV, narrows the range rjoq. The oscillations are related to the self-

of the numerical simulation but clearly reveals the OSC"'atorycommensurability of the drifting cyclotron orbit. The

behavior ofApp, with changinge. Thﬁez ed>/<§)0_nent|al depen- gnalytical results are in full agreement with the numerical

dence in Fig. 3 is fitted very well bg™“""” [in accordance  gjmylation. A detailed numerical study of the transport prop-

with Eq. (13)] with no fitting parameter in the exponent. The gries of the fermions in a random magnetic field will be

oscillations of Ap,, with changingR./é (inset of Fig. 3 resented elsewhere.

have a period close to 1/2 and are in good agreement Witﬁ

the analytical prediction p,,|cos(2rR./5)|. This work was supported by the Deutsche Forschungsge-
In conclusion, we have studied the violation of the adia-meinschaft through SFB 195 and by the Graduiertenkolleg

baticity of the electron dynamics in a slowly varying mag- “Kollektive Phanomene im Festkper,” and by the INTAS
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