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Two-dimensional disordered superconductors with broken spin-rotation and time-reversal invariance, e.g.,
with px+ ipy pairing, can exhibit plateaus in the thermal Hall coefficient �the thermal quantum Hall effect�. Our
numerical simulations show that the Hall insulating regions of the phase diagram can support a sub-phase
where the quasiparticle density of states is divergent at zero energy, ��E���E�1/z−1, with a nonuniversal
exponent z�1, due to the effects of rare configurations of disorder �Griffiths phase�.
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The integer quantum Hall effect �IQHE� is observed in
two-dimensional �2D� electron gases in high magnetic fields.
Its striking manifestation is the quantization of the Hall con-
ductance �xy in units of e2 /h. Analogs of the IQHE are also
known in systems with broken time reversal symmetry in
which quasiparticle charge conservation is violated because
of the presence of a charge condensate, while quasiparticle
spin and energy remain conserved. In such a situation the
Hall coefficients for spin or heat transport can exhibit pla-
teaus at integer values in units of � /2� �Ref. 1� or
�kB

2 /3�,2,3 respectively. There has been a great deal of recent
interest in these spin and thermal quantum Hall effects
�SQHE and TQHE�.1–8 In particular, the TQHE �Ref. 9� that
one obtains in the absence of spin conservation displays
many peculiar features that are not found in the IQHE or
SQHE.3,11 These unusual properties arise in systems with
paired fermions without spin conservation, which belong to
class D in the Altland-Zirnbauer scheme.10 These systems
find a natural realization in disordered superconductors with
triplet �p-wave� pairing, e.g., Sr2RuO4.12,13

Another candidate pertinent for class D physics is the �
=5/2-state in the fractional quantum Hall effect, that exhibits
pairing of composite fermions.14–16 This state is observed
almost routinely in experiments.17,18 According to recent pro-
posals, this state can be used for quantum computing,19 as its
localized zero energy excitations �zero modes� exhibit non-
Abelian statistics.14

In this work, we investigate the effect of disorder on the
density of states �DOS� of such 2D systems in symmetry
class D, choosing as a model system a Chalker–Coddington-
type network, which is a fermionic representation of the ±J
random bond Ising model �RBIM�. Our choice is motivated
by the fact that much is known about this system, including
the location of the phase boundary20 separating the ferro- and
paramagnetic phases �which in the fermionic language trans-
lates into a transition between two insulating Hall phases�.
The two phases are distinguished from each other via the
value of their dimensionless Hall conductance, see Ref. 3.
The quantum Hall transition between these two insulating
phases has been extensively studied.20 As we discuss at the
end of the paper, our results are however not restricted to this
model but rather are generally valid for TQHE systems.

Recently, Gruzberg et al.21 suggested that the RBIM has

insulating phases supporting a region where the DOS exhib-
its a power-law singularity ��E�� �E�−1+1/z with a nonuniver-
sal exponent z. Strong-disorder renormalization group �RG�
calculations of Motrunich et al.22 have also demonstrated the
presence of such a divergence in the DOS �with z�1� in
quasi-one-dimensional �1D� superconductors with broken
time reversal and spin rotation invariance. This has also been
confirmed by calculations using a Fokker–Planck
approach.23 The strong-disorder RG calculations make it ap-
parent that the DOS divergence originates in this and in other
1D models24 from Griffiths effects25 involving exponentially
rare length � regions �occurring with probability �e−c��� of
the sample in nearby phases. An exponentially weak cou-
pling, �e−c�, of defects at the boundaries of such rare re-
gions produces a power-law tail in the low-energy DOS:

��E� � � d � 	�E − e−c��e−c�� � �E�1/z−1 �1�

�z=c /c� and c ,c� are nonuniversal parameters�.
Gruzberg et al.21 and Motrunich et al.22,29 further conjec-

tured that a similar mechanism drives a divergent DOS also
in 2D systems in class D. We stress that this extension of 1D
physics to a generic system in two dimensions is far from
obvious, and we provide here the first detailed evidence and
understanding of the same.

A regime with a divergent DOS is in sharp contrast to the
situation in standard Wigner–Dyson ensembles, where the
DOS is never divergent. In 2D power-law divergences, ge-
nerically modified by logarithmic corrections �the Gade form
of the density of states27,29� have been known to exist in very
special systems belonging to the chiral �or particle-hole sym-
metric� symmetry classes26,28 that are very difficult to realize
experimentally. This Gade form of the DOS arises in critical
phases without exponential localization of the wave func-
tions. Pure power laws are only known to occur under highly
contrived circumstances, namely in chiral systems with prob-
ability distributions of random couplings that are not trans-
lationally invariant.29 By contrast, here we report an obser-
vation of an insulating Griffiths phase with power-law
singularities in the DOS of a model �RBIM� in the TQHE
universality class with full (statistical) translational invari-
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ance. We further demonstrate numerically that the divergent
DOS is indeed governed by a 1D mechanism involving the
presence of rare long string defects. Our numerical results
thus show that TQHE—in contrast to its close relatives, the
IQHE and the SQHE—does exhibit the conjectured Griffiths
phase.21,22

The RBIM network that we use for our calculations is a
square lattice comprised of directed links �Fig. 1�a��. A state
of the network is defined by assigning a complex �probabil-
ity� amplitude to every link. The state’s evolution in a single
time step is governed by an operator U. It generates a prob-
ability flow that follows the link’s direction and turns left or
right with probability tl and 1− tl at a node. Consistent with
class D symmetry, the flow along the network links picks up
a phase factor of � on winding around the plaquette once,
hence the �−� signs. Disorder �realizing antiferromagnetic
couplings, J→−J� is introduced by vortex pairs that are at-
tached to the network nodes, see Fig. 1�b�.

The network is characterized by two parameters: the con-
centration of vortex pairs, p, and the inter-plaquette coupling,
tl=sin2
. The latter can be related to the temperature T and
coupling constant J of the Ising model formulated in terms of
lattice spins via tl=cosh−22J /T. At low T, the fermions wind
preferably about plaquettes not carrying spins: tl�0. Figure
2 shows the model’s phase diagram. The phases of the spin
system—ferro- and paramagnetic—correspond to two insu-
lating phases of the network fermions. The insulating char-
acter is easily understood in the clean case, where it is a
consequence of band structure: In the two limiting cases tl
=0 and tl=1 fermions wind about their own plaquettes in-
definitely. Then the energy spectrum is degenerate, and the
Fermi energy E=0 lies in a gap. Only at tl=1/2, i.e., on the
transition line, the gap closes. The gap is robust against in-
troducing a weak concentration of antiferromagnetic
bonds30,31 and therefore two insulating phases develop.

We construct U for a single time step for networks with
periodic boundary conditions according to the prescription
implied by Fig. 1. Its eigenvalues come in quadruplets, ±e±iE

because U is unitary, real and obeys a chiral sublattice sym-
metry: Hopping is allowed only from one sublattice to the
other. In the limit tl=0, the eigenvalues are most easily ob-
tained by noting that ei4E=−1 when the fermion moves about
a clean plaquette and ei4E=1 if the plaquette is pierced by a
vortex. In the latter, E=0 is a valid solution. These are the
zero modes mentioned in the introduction.

In order to extract the eigenvalues closest to zero at
tl�0, we use standard sparse matrix packages.32 Typically 8
to 16 eigenvalues per system are calculated. We obtain the
density of �pseudo�-energies, ��E�, from an average over an
ensemble of disorder realizations which contains typically on
the order of 104 members.

As expected, we find from this procedure that at low con-
centration of disorder �and actually in the entire paramag-
netic phase� the gap of the clean system survives �see Fig. 3�.
More precisely, due to the Lifshitz mechanism it turns into a
pseudo-gap.33 However, if we start in the ferromagnet at
large values of the interplaquette coupling strength tl and
diminish it at fixed disorder so as to get close to the Nishi-
mori line �NL�, we witness a qualitative change in the low-
energy DOS: The pseudo-gap vanishes and the DOS starts to
increase with lowering E, apparently diverging as E→0.
This is demonstrated in Fig. 3, where the evolution of DOS
is shown as tl is lowered from 0.13 down to 0.014. For large
enough tl, one still notices the pseudo-gap behavior. The lat-
ter is already less evident in the data that corresponds to the
coupling strength tl=0.07. It finally gives way to a strongly
increasing behavior once tl falls below �0.05.

Having demonstrated the DOS divergence in the low-T
part of the ferromagnetic phase, we now discuss the corre-
sponding mechanism. We will show that the singularity is
governed by rare disorder configurations containing long
chains �strings� of defects. Since each defect contains a pair
of vortices, such a string of a length ��1 �formed with a
probability �p�� produces effectively two vortices with a
large separation ��.

At tl=0, every vortex in the system contributes a zero
mode to the spectrum, which therefore has a macroscopic
degeneracy �pL2 at E=0. Upon switching on the coupling
tl, the zero modes couple and the degeneracy is lifted. For a
small tl, the energy splitting E thus produced will be expo-

FIG. 1. 2D Ising models in a representation of fermions moving
on a chiral network: �a� Clean system; spin sites of the Ising model
in its original spin representation are also shown, �b� network car-
rying an isolated vortex �hatched plaquettes�. Vortex pairs are real-
ized by inserting two half integer flux quanta into a pair of
plaquettes sharing a single node, and �c� a string of four vortex
pairs.

FIG. 2. Phase diagram of TQHE in RBIM-network model rep-
resentation, disorder p vs interplaquette coupling strength �tempera-
ture� tl. Fixed points: High temperature �HT�, low temperature �LT�,
clean Ising �I�, multicritical point �N�, and percolation �Pc�. Phase
boundary �solid, precise location calculated in Ref. 20� separates
two Hall insulators �called ferro and para using RBIM terminol-
ogy�. The Nishimori line: a line which supports a local Z2 symme-
try and where the internal energy of the model is analytic. Shaded
region indicates Griffiths phase with diverging single particle den-
sity of states, ��E�; in plain white regions DOS has �pseudo�-gap.
Line segments represent scans for ��E� displayed in Fig. 3. In Fig.
4, scan is along phase boundary from N to Pc.
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nentially small in �.30 For a clean system �which contains
only two vortices at the ends of the string but no other de-
fects� this follows immediately from the perturbation theory,
yielding E� tl

�/2=e−c�. Clearly, the same result holds for
those rare configurations of the disordered system for which
the region of a size �� around the vortex pair is free of other
vortices. However, the probability for this to happen scales
with � as �1− p��d

, where d=2 is the spatial dimensionality.
In the 1D case this factor is harmless, yielding the prob-
ability for formation of an isolated string �e−c�� with
c�=−ln p�1− p�2 and Eq. �1� applies. On the other hand, in
d=2, the above factor seems to spoil the reasoning leading to
Eq. �1�. So, if the requirement of isolation of the vortex pair
would be a necessary condition for the appearance of expo-
nentially small eigenvalues, ��e−c�, the divergent DOS
would be converted into a pseudo-gap at lowest energies due
to the �1− p��d

factor.
We now argue that this requirement is not necessary, and

Eq. �1� is applicable in two dimensions as well. Indeed, at
small p almost all randomly located defects will be isolated.
Correspondingly, 	p is the concentration of vortex pairs
with separation unity and an energy splitting �tl

1/2. There
will be a much smaller concentration �p2� of defects forming
chains of length two, yielding the energy splitting �tl, and so
forth. The energy splitting associated with these nearby
�compared to �� vortices will be relatively big, and will only
weakly affect the energy splitting t�/2 of the �-vortex. This
argument can be converted to a RG procedure, as in Refs. 22
and 29. Vortices can be sorted into pairs by combining those
with the shortest distance first, the second shortest distance
next, etc. Since the energy splitting associated with the cou-
pling of two vortices is exponential in their distance, pairs
differing in this distance will strongly differ in their splitting
as well. The hierarchical order allows for a RG procedure
that successively eliminates vortex pairs with an energy split-

ting that is large as compared to the pairs remaining on the
lattice. Clearly, for sufficiently small tl and p �the boundary
of the Griffiths phase will be discussed below� the eigenval-
ues associated with long strings, i.e., vortex pairs with a large
separation, are �largely� insensitive to the presence of other
vortex pairs. In other words, an �-string does not have to be
isolated in order to contribute an eigenvalue �e−c�. The only
role of other �randomly distributed� vortices will be in some-
what modifying the parameter c as compared to its bare
value c=−1/2 ln tl.

The string mechanism, which is crucial for the proposed
RG argument, has been validated by a numerical test. We
have inserted a string of the length � ��=8–56� into a disor-
dered network with tl=0.029 and p=0.08. Figure 4 displays
the evolution of the distribution of the lowest eigenvalue
with increasing length of the string. The results fully confirm
our scenario: �a� The extra string gives rise to an additional,
isolated eigenvalue; �b� this eigenvalue moves with increas-
ing l according to the expected exponential law, 
−ln ����,
see inset of Fig. 4 �the rest of the spectrum does not move�.
We have performed the same calculation in the paramagnetic
phase �p=0.2, tl=0.029� and found that the distribution does
not move with �: A long string of defects in a random envi-
ronment does not generate an exponentially small eigen-
value.

Therefore, the analytical arguments together with the nu-
merical results, Figs. 3 and 4, demonstrate the existence of a
Griffiths phase where string formation generates a divergent
DOS, Eq. �1� with z�1. This phase is shaded in the phase
diagram, Fig. 2. Its boundary on the side of larger tl is given
by the condition z=1 and, according to our numerical results,
is at least close to the NL. The asymptotic behavior of the
boundary at low T and weak disorder can be easily found
from our analytical considerations. Indeed, in this limit
c	−1/2 ln t�	2J /T, and c�=−ln p, so that the condition z
=c /c�=1 reduces to ln p	−2J /T. This agrees with the low-
T asymptotics of the NL, whose exact form is e2J/T= p / �1

FIG. 3. DOS at disorder value p=0.08 deep in the ferromagnetic
phase. As coupling between plaquettes is progressively reduced,
pseudo-gap gives way to power law divergency. Plots show aver-
ages for two system sizes, 128 �256� with 20,000 �10,000� realiza-
tions. Data comprise 8 lowest lying eigenstates; tl=0.029 corre-
sponds to location on Nishimori line.

FIG. 4. Distribution of logarithm of lowest eigenvalue for string
of defects of length �=8–56 inserted in disordered system in fer-
romagnetic phase �p=0.08, tl=0.029, L=128�. Inset: Typical lowest
eigenvalue as a function of �.
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− p�. It is thus plausible that the boundary of the Griffiths
phase with divergent DOS in fact coincides with the NL as
was conjectured in Ref. 21.

The boundary at large p is the phase transition line into
the paramagnet, where the string mechanism ceases to be
operative. Right here, between the Nishimori point N and the
percolation critical point Pc, we find a divergent DOS with a
nonuniversal exponent z. While we do not have at present an
analytical theory for this behavior of DOS at criticality, an
analogy with the random phase XY model, which has a phase
diagram remarkably similar to Fig. 2, might be instructive.34

In conclusion, we have demonstrated that a type of insu-
lating phase for 2D electron systems characterized by a di-
verging DOS occurs in the TQHE. We have shown that this

Griffiths-type singularity is related to the formation of strings
of defects leading to an exponentially small splitting of zero
modes. Our numerical work is based on the network repre-
sentation of the ±J random bond Ising model. Preliminary
results on the more generic Cho-Fisher model35 suggest that
the Griffiths phase is a ubiquitous companion of the TQHE.
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