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We investigate numerically the statistics of wave function amplitugié9 at the integer quantum Hall
transition. It is demonstrated that in the limit of a large system size the distribution functids|ofis
log-normal, so that the multifractal spectruifr) is exactly parabolic. Our findings lend strong support to a
recent conjecture for a critical theory of the quantum Hall transition.
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In 1980 von Klitzing, Dorda, and Pepper discoverétht  proposed that this is a-model with the Wess-Zumino-
the Hall conductance,, of a two-dimensional electron gas Novikov-Witten (WZNW) termI",
develops plateaus at values quantized in unitsett.
Twenty years later, the integer quantum Hall effdQHE) 1 _
still constitutes one of the %rezgt challenges of condensed- Sal= 877)\2J d°x St 1(?#g+k1“, D
matter physics. Initially, the effort focused on the physics of . ]
the Hall plateaus which is by now fairly well understcd. Whereg belongs to a certain symmetric superspesee Refs.

Then interest has shifted towards the transition region, wherd0 @nd 11 for a detailed expositiorand\ andk are cou-
al/mg constants. The theories considered in Refs. 10 and 11

o,y Crosses over from one plateau to the next. However, herg: & v in th | ¢ th &in f ¢ th
the situation is not as well resolved. It has been understoo, IZel\erSnty n Ii—elv'a uFi ? 1t0e ccc)ﬂr!s_ti/)\zln rgntf 011t ﬁ
from early on that this is a second-order phase transition, an erm, k=_ In Rel. ande= n et L

the scaling scenario has been confirmed in numerous expef[r-ue’ the conjecture of Refs. 10,11 will provide a framework

ments and computer simulatidhgielding, e.g., the value or a systematic study of the IQHE critical behavior. While
o P e the exponent has not yet been found on this basis, a non-
:_2'35 for the Iocallzgnon length exponen_t. m contra;t, AN3Agjyjia prediction for the statistics of critical eigenfunctions
lytical approaches did not lead to quantitative predictionsy,aq peen obtained. Specifically, it was found in Ref. 11 that
The ultimate goal here is to identify the effective low-energyhe corresponding multifractality spectrum is exactly para-

theory of the critical pointexpected to be a conformal field pojic (which means that the distribution of eigenfunction in-
theory) and to calculate critical exponents and other charactensities is log-norma|

teristics of the transition region. In particular, independence
of the crit_ical th(_aory on mic_r_oscopic paramete_rs v_vould es- 7(6():2_(&_0[0)2/4(0[0_2), )
tablish universality of the critical exponents which is a mat-
ter of intensive and controversial discussions in the experiwith ay—2=2\? (a formal definition of the functiofi(«) is
mental literature. given below. For the model of Ref. 10 a parabolic multi-
The earliest field-theoretical formulation of the problem fractal spectrum of a somewhat different quantity, the two-
was given by Pruiskén(see Ref. 6 for a more precise, su- point conductance, was obtainEdWe can show, howevEt
persymmetric versionand has the form of the nonlinear that the two statements are closely related, so that the find-
o-model with a topological term. Since the latter is invisible ings of Refs. 10,12 imply again the res(@® for the eigen-
in perturbation theory, one has to resort to nonperturbativéunction statistics, witheg—2=4\2. The exact parabolicity
means in order to address the critical behavior. Pruisken an@) of the multifractality spectrum constitutes a stringent pre-
co-workers were thus led to the dilute instanton gaddiction, numerical verification of which would be a serious
approximatior!. However, this approximation can only be check of validity of the theory proposed in Refs. 10,11. This
justified in the weak-coupling limitg,/(e?/h)>1, and be- is the aim of the present paper.
comes uncontrolled in the critical regian,~e?/h. For this Our interest in this problem was additionally motivated
reason, no quantitative predictions for critical propertiesby the fact that the previously published numerical
have been made within this approach. Another line of effortgesult$***~*"appeared to be in clear conflict with the pre-
was based on a mapping of the low-energy sector ofliction(2), showing strong deviations from parabolicity. Fur-
Pruisken’s model onto an antiferromagnetic superspin c¢hainthermore, it has been a widespread belief that the parabolic
The superspin chain was also obtained by starting from thapproximation cannot in principle be exact, since the singu-
Chalker-Coddington network model of the IQHElowever, larity spectrumf(«) is only defined on an intervat_ <«
attempts to find an analytical solution of the superspin chainr< «, , where it is positive, and has infinite derivatives at the
problem remained unsuccessful. termination pointsf’(a_)=f'(a,)=%. As we demonstrate
Recently, two papers appeared which may signify a breakbelow, these earlier findings were crucially affected by
through in the quest for the conformal critical theory of thefinite-size effects and by the absence of a proper ensemble
IQHE. Zirnbauet® and, a few months later, Bhaseenal,'!  averaging.
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To begin with, we recall the general framework used forof g, implying that f(a) meets thea-axis with infinite
the description of critical wavefunction statistics. One intro-slope® This is, however, nothing but an artifact of a finite

duces a set of inverse participation ratfos system sizé.. For any giverL there is a finite interval of
close toa_ where the corresponding spectriip({«) devi-
p :f d%y(r)|29, g=0, ®) ates from its asymptotic form and approaches the axis with
4 )L an infinite derivative. In the limit — oo this interval shrinks

to zero, and the spectrum acquires its limiting fofp(«)

where (r) is the wavefunction amplitude andthe system
vr) b y =f(a), corresponding to a nonanalytig,

size.(For the IQHE dimensionality id=2.) These moments
show in the large.-limit scaling behavior characterized by a
set of exponents, which can be defined for both the average
and the typical value oP,

Jrq, 0<a<qc
qa—, 9>qc.

The situation is similar to a phase transition where singulari-
ties also occur in the thermodynamic limit only. Practically

PYP—exp(In Py)=cqL " (5)  speaking, this means thag and'7,, though identical in the

q q q ! T . X
) . thermodynamic limit on the interval90q<q., have differ-

where( . ..) denotes ensemble averaging. As longgais  ent finite-size corrections.
small enoughg<qc, the distribution function oP is suf- For calculating the critical wavefunctions at the quantum
ficiently narrow andrq= 7. However, with increasing this ~ Hall transition we employ the Chalker-Coddington network
distribution function becomes broader. Most importantly, itmodel?® In order to obtain the wavefunction we translate the
shows a power-law taik pq‘l‘xq at largeP,, wherex, de- lattice dynamics into a unitary time evolution operatdr
creases with increasirg The critical valueg, is determined which describes the wave packet propagation on the network

by the conditiorx, =1. Forq>q, the averagéPy) is gov- in discrete time step¥. The desired critical wavefunctions

~ are the eigenfunctions af, which are found by numerical
erned by rare events, ang> 7,. We refer the reader to Ref. diagonalization.

19 for more details. _ The calculations were performed for systems of the size
Instead of using the momeng, one can study directly ranging fromL=16 (6-1CF wave functions to L=1280
the distribution” of the wavefunction amplitudes. It is easy (2000 wave functions We implemented efficient numerical
to see that4) translates, in the limit —<, into packaged 2% which allowed us not only tdpartly) diago-
12 —d+F(a) o 5 nalize large systems, but also to do it fast enough in order to
Pla)~(InL)™ L . a==In[g[*InL,  (6)  cojiect sufficient statistics. Specifically, for a system of gize
and for each disorder realization we diagonalized a complex
NXxN matrix of the sizeN=2L? (which reachedN~3.3
-10° for the largestL) with machine accuracy. For compari-
~rq=qa—~f(a); q=T"(a). ) son,.the biggest realization of the ngtwork model reported in
the literature that we are aware of is smaller by a factor of
Similarly, one can define thé(a)-spectrum of a typical five in linear dimension$® Since an accurate extrapolation

©)

Tq

(P=CqL ™7, (4)

where the functiori (a) is related to the exponents via the
Legendre transformation,

eigenfunction(which satisfiesf()=0.?) to the thermodynamic limit was of primary importance for
) =Qa— - =1’ 8 our work, it was crucial that we could observe the finite size
(@)=Qqa—1q; q=f'(a). ®  corrections over almost two orders of magnitude_in

The two definitions COinCidef,(a) ='Tf'(a)>0,18 for a<qc, AS a flrSt teSt Of the Va“dlty of E(KZ), we check its two
or, equivalently, fora_ <a<ag,, where ay describes the partlcularllmpllcano.ns, namelgo—2=2-a; anday,=2,
scaling of the typical value, e)@m|¢12)oc|_*ao, and @ de- Wwhereq, is determined b)(?_), aq=d7,/dg. We evaluated
notes the zero df f(_)=T(a_)=0. On the other hand, in ®a(L) for different system sizes,

the regime of rare eventey<a_, the functionf(a) be- aq(L)z—(|¢|2qln|¢|2)/<|¢|2q>ln L, (10)

comes negative, whil&(«) is not defined. The best estimate o )
for ay from previous numerical work is 2.260.0116 The ~and then extrapolated to the infinite system sizg,

value of @_ obtained in Ref. 16 is 1:£0.1, incompatible = !iM,__ a4(L), according to
with (2).
It is important to realize that the field-theoretical predic- q &,
tion (2) refers to the functiorf(a), since in the theory one ag(L)=aq+ | 1+ Yoy T 1D

deals with averaged momer®. In contrast, the earlier nu-

merical studies were devoted to the multifractal spectrum off he most important finite-size effect is of the form 1n

a single eigenfunction, thus yieldingd«) as an output. We according to(4), with a coefficient\ ;=d InEq/dq. The sec-
further turn to a common misconception concerning an infi-ond term in brackets if11) stems from finite-size correc-
nite slope of thef(a) spectrum at its termination point, tions to(4) and is governed by the leading irrelevant scaling
f'(a_)=0c0, which seems to rule out the parabolic fo(g). exponenty. The corresponding length scalg, can be in
Indeed, in anyfinite systemr, must be an analytic function principle absorbed in the coefficient, .
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FIG. 1. Finite size effects for the scaling exponeats(O, fit FIG. 2. Evolution ofT(a), as calculated from the distribution
solid line) anda; (¢, fit dashed ling defined in(10). Also shown  function (6), with the system sizé.. The inset shows the corre-
is the result foray (O, fit dotted ling from the transfer matrix sponding change af _ , defined byf(«_)=0. An extrapolation to
calculation, Eq(12). infinite L yields: o =0.8+0.02.

The raw data that provides the basis for the extrapolation . . , . .
to L—c is shown in Fig. 1. From the fit11) we find aq with L, which points to the importance of the extrapolation to

—2.261+0.003, A\y=0.09+0.02, and a;=1.739+0.002, L—o. In particulf\r, the inset of Fig. 2 shows the evolution
A,=—0.11+0.01. A similar analysis for the casg=1/2  Of the zeroa_ of f(@) with L. Extrapolating to infinite sys-
yields ay,— 2=0.0001+0.0002,\ 1 ,,= —0.042+0.002. Itis  tem size[by taking into account the leading finite-size cor-
clearly seen that within the accuracy of the numerical datdection, which has the same 1llrform as in Eq(11)] yields
ap—2 and 2- a; indeed coincide and,— 2 vanishes, in the valuea_=0.8+0.02 in the thermodynamic limit. This
agreement with{2). The irrelevant exponentis found to be  agrees with the result 0.818.004 based on E¢2) in com-
y=0.4+0.1, which is consistent with earlier resdit§ (the  bination with the value o, found above, providing a fur-
accuracy of its determination is not very high, since the corther strong support to the parabolic 14®).
responding finite-size correction is rather small In order to obtain the whol&(«) curve in the thermody-
As an additional check we have calculateglin yet an-  namic limit with highest possible accuracy, we return to the
other way, which uses a conformal mapping to a quasi-oneprocedure based on the evaluation of moments, Egsnd
dimensional strip of the Chalker-Coddington network. It was
shown by JanRéh that «, is related to the localization

length &, in a strip of widthL: 201
ag—2=(1/m)limL/& . (12 15 |
L—oo
Since this relation tieg to the amplitudeA of the scaling 1.0 1
law & =LA, the finite-size corrections on the strip take a
form different from(10), 5_5, 05
44— <L=16
ag(L)=ag+ y(§i /L)Y + - - - (13 o L=128
0.0 oL=1024 [
We have calculated, using the transfer matrix method and :
found ay=2.260+ 0.003, in full agreement with the previous 05 |
result. This confirms the fundamental assumption that the 16 20 24
critical theory is conformally invariant. The irrelevant scale 10 , , ,
index is obtained ag=0.45+0.1, in agreement with earlier 0.5 1.0 15 2.0 2.5
findings. o
Having satisfied ourselves that numerical resultsdgr . ~ o )
ay),, anda; are in favor of the conjectur), we turn to an FIG. 3. Multifractal spectruni(«) (solid line). The dashed line

analvsis of the?(a) spectrum in a broader range of Re- shows the theoretical conjectuf®) with ay=2.262. The point
Y P 9 wheref(a) vanishes according to the data presented in Fig. 2 is

sults of the calculation 0If2(a) according to Eq(6) fromthe ;55 shown [0). Inset: spectrunii(«) of a typical eigenfunction for
distribution function(| () for different system sizes are ifterent L and extrapolated td.— (®). The line shows the
shown in Fig. 2. It is seen thdt(a) changes appreciably parabolic law.
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(10), since it has the advantage that we have full control ovethe theory. While Zirnbaué? gave convincing arguments in
finite-size corrections, Eq11) (the transformation from the favor of k=1, the mechanism of fixation of remains un-
moments to the distribution function E) induces addi- clear. In particular, whether or nat is universal is an im-
tional corrections proportional to higher powers of 1jn  portant open question which requires further analytical and
Performing an extrapolation to— =, we get thef () curve ~ Numerical studies. _ o N
shown in Fig. 3, which represents the central result of this In conclusion, we have studied the statistics of critical
Rapid Communication. The figure demonstrates a perfedvave functions at the IQHE transition point. We imple-
agreement between the obtaiffée) and the parabolic form Mented a powerful algorithm which allowed us to reach un-
(2) with @p=2.262. Of course, a numerical analysis Canprecedent.eq large system sizes and to gather sufﬂmently
never guarantee that two quantities are identical rather thagloc’d statistics. Having _pgrformed the e_nsemble averaging
just very close to each other. However, taking into accounf’md an analysis of the finite-size corrections, we calculated
that there is no small parameter in the problem, we believéhe multifractality spectrunf(a) of critical wave functions

that an accidental closenessfgfr) to a parabola with such in Ith'e Fherm?dynamic “m"‘_’.ooh f?]r 0'5$0t‘)$|.2'?' The_rr(]a—
a high accuracy is extremely improbable. We thus concludéu'[_'S In perfect agreement with the parabolic o wit .
that the theoretical predictiof2) stating that the multifractal ag=2.262:0.003 and hence it supports the recent conjec-
spectrum is exactly parabolic is correct ture for the f%rm of the conformal field theory of the IQHE
. .. . 1 Y]_]_
To illustrate the difference and the relation betwééa) critical point:

andf(«) and to make a closer contact to earlier works, we e are thankful to X. S. Li and to the Computer Centers
show in the inset of Fig. 3 thi(a) spectrum as obtained for of the Forschungszentrum and the University of Karlsruhe
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