3,354 research outputs found

    MC generator TAUOLA: implementation of Resonance Chiral Theory for two and three meson modes. Comparison with experiment

    Full text link
    We present a partial upgrade of the Monte Carlo event generator TAUOLA with the two and three hadron decay modes using the theoretical models based on Resonance Chiral Theory. These modes account for 88% of total hadronic width of the tau meson. First results of the model parameters have been obtained using BaBar data for three pion mode.Comment: 5 pages, 1 figure, contribution to the Proceedings of the QCD@Work12 Conferenc

    Resonance Chiral Lagrangian Currents and Experimental Data for τπππ+ντ\tau^-\to\pi^{-}\pi^{-}\pi^{+}\nu_{\tau}

    Full text link
    In this paper we document the modifications introduced to the previous version of the Resonance Chiral Lagrangian current ({\it Phys.Rev.} {\bf D86} (2012) 113008) of the τ±π±π±πντ\tau^\pm \to \pi^\pm \pi^\pm \pi^\mp \nu_\tau decay which enable the one dimensional distributions measured by the BaBar collaboration to be well modeled. The main change required to model the data is the addition of the σ\sigma resonance. Systematic errors, theoretical and experimental ones, limitations due to fits of one dimensional distributions only, and resulting difficulties and statistical/systematic errors for fitted parameters are addressed. The current and fitting environment is ready for comparisons with the fully exclusive experimental data. The present result for τ±π±π±πντ\tau^\pm \to \pi^\pm \pi^\pm \pi^\mp \nu_\tau is encouraging for work on other τ\tau decay modes and Resonance Chiral Lagrangian based currents.Comment: 16 pages, 2 figure

    Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology

    Get PDF
    We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe Ia) observed in the near-infrared J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the near-infrared (NIR) are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from host-galaxy centre. The only significant correlation is between the J-band Hubble residual and the J-H pseudo-colour. We also examine how the scatter changes when fewer points in the near-infrared are used to constrain the light curve. With a single point in the H band taken anywhere from 10 days before to 15 days after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6%. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA

    Spectral Models for Early Time SN 2011fe Observations

    Get PDF
    We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ

    Galaxy Zoo Supernovae

    Get PDF
    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.Comment: 13 pages, 10 figures, accepted MNRA

    An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate

    Full text link
    There is wide agreement that Type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for ~1e7 yr before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of ~30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than ~5 per cent of Type Ia supernovae in early type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.Comment: 10 pages, 1 tabl

    Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models

    Full text link
    Abridged. In the double detonation scenario for Type Ia supernovae (SNe Ia) a detonation initiates in a shell of He-rich material accreted from a companion star by a sub-Chandrasekhar-mass White Dwarf (WD). This shell detonation drives a shock front into the carbon-oxygen (C/O) WD that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the WD. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of SNe Ia since the explosion ejecta are surrounded by the products of explosive He burning in the shell. Recently, it was proposed that detonations might be possible for much less massive He shells than previously assumed. Moreover, it was shown that even detonations of these minimum He shell masses robustly trigger detonations of the C/O core. Here we present time-dependent multi-wavelength radiative transfer calculations for models with minimum He shell mass and derive synthetic observables for both the optical and {\gamma}-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive He shells were considered. Our models predict light curves which cover both the range of brightnesses and the rise and decline times of observed SNe Ia. However, their colours and spectra do not match the observations. In particular, their B-V colours are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the He shell of our models which contain significant amounts of Ti and Cr. Using a toy model, we also show that the burning products of the He shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed SNe Ia may still be feasible but further study of the shell properties is required.Comment: 17 pages, 13 figures. Accepted for publication by Ap
    corecore