96 research outputs found

    A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica

    Get PDF
    Extreme events associated with global change will impose increasing stress on coastal organisms. How strong biological interactions such as the host–parasite arms-race are modulated by environmental change is largely unknown. The immune system of invertebrates, in particular phagocytosis and phenoloxidase activity response are key defence mechanisms against parasites, yet they may be sensitive to environmental perturbations. We here simulated an extreme event that mimicked the European heat wave in 2003 to investigate the effect of environmental change on the immunocompetence of the mesograzer Idotea baltica. Unlike earlier studies, our experiment aimed at simulation of the natural situation as closely as possible by using long acclimation, a slow increase in temperature and a natural community setting including the animals’ providence with natural food sources (Zostera marina and Fucus vesiculosus). Our results demonstrate that a simulated heat wave results in decreased immunocompetence of the mesograzer Idotea baltica, in particular a drop of phagocytosis by 50%. This suggests that global change has the potential to significantly affect host–parasite interactions

    Frequency-specific hippocampal-prefrontal interactions during associative learning

    Get PDF
    Much of our knowledge of the world depends on learning associations (for example, face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive and mnemonic abilities are akin to those of humans. We found functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, whereas HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC and increased with learning. Rapid object associative learning may occur in PFC, whereas HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.National Institute of Mental Health (U.S.) (Conte Center Grant P50-MH094263-03)National Institute of Mental Health (U.S.) (Fellowship F32-MH081507)Picower Foundatio

    Gambling Problems among Community Cocaine Users

    Get PDF
    Cocaine use is highly prevalent and a major public health problem. While some studies have reported frequent comorbidity problems among cocaine users, few studies have included evaluation of gambling problems. This study aimed to estimate the prevalence of gambling problems and compare those who were at-risk gamblers with non-problem gamblers in terms of mental health problems, substance use problems, and some risk factors (i.e. family antecedents, erroneous perceptions and coping strategies) among individuals who smoke or inject cocaine. METHOD: A total of 424 smoked or injected cocaine users recruited through community-based programs in Montreal, Quebec completed the questionnaire, including the Canadian Pathological Gambling Index, the Composite International Diagnostic Interview (CIDI), the CAGE, and the Severity Dependence Scale (SDS). RESULTS: Of the sample, 18.4 % were considered at-risk gamblers, of whom 7.8 % had problems gambling and 10.6 % were moderate-risk gamblers. The at-risk group was more likely to have experienced a recent phobic disorder and alcohol problems than the non-problem group. A multivariate analysis showed that, compared to those who were non-problem gamblers, the at-risk ones were more likely to have lost a large sum of money when they first started gambling, believed that their luck would turn, and gambled in reaction to painful life events. These results indicate the need to include routines for screening to identify gambling problem among cocaine user

    The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V

    Get PDF
    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galβ1,4Manα1-PO4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification

    Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824

    Get PDF
    Background: Clostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin–cellulose–hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone–butanol–ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome. Results: Our results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L−1 of lignin led to delay and decreased solvents production (ethanol; 0.47 g L−1 for cellobiose and 0.27 g L−1 for cellobiose plus lignin and butanol; 0.13 g L−1 for cellobiose and 0.04 g L−1 for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology. Conclusions: This is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin

    Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala

    Get PDF
    The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine

    Modeling individual-tree mortality in Pyrenean oak (Quercus pyrenaica Willd.) stands

    Full text link
    International audienceTree mortality is an important process in forest ecosystem dynamics and is one of the least understood phenomena, because of the complex interactions between different environmental stresses, minimal understanding of whole-plant mortality processes, and a chronic shortage of data. * A multilevel logistic regression model was developed for predicting the probability of mortality in individual trees with the objective of improving long-term planning in Spanish pyrenean oak forests. The data came from one 10-year re-measurement of the permanent plot network belonging to the Spanish National Forest Inventory distributed throughout north-west Spain. * The probability of mortality decreased with increasing individual diameter at breast height and increasing ratio of the height of subject tree to the dominant height of the sample plot. The resulting mortality model was evaluated using an independent data set from a region close to the study area. * The regeneration of pyrenean oak generally takes place through stump and/or root sprouting; so stand dynamics differ from those of others species. The model developed is expected to improve the accuracy of stand forecasts in northwest Spain

    Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes

    Get PDF
    Alzheimer’s disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β − and γ − secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer’s disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13041-015-0129-7) contains supplementary material, which is available to authorized users
    corecore