22,003 research outputs found

    Computer program offers new method for constructing periodic orbits in nonlinear dynamical systems

    Get PDF
    Computer program uses an iterative method to construct precisely periodic orbits which dynamically approximate solutions that converge to precise dynamical solutions in the limit of the sequence. The method used is a modification of the generalized Newton-Raphson algorithm used in analyzing two point boundary problems

    Method for constructing periodic orbits in nonlinear dynamic systems

    Get PDF
    Method is modification of generalized Newton-Ralphson algorithm for analyzing two-point boundary problems. It constructs sequence of solutions that converge to precise dynamic solution in the sequence limit. Program calculates periodic orbits in either circular or elliptical restricted three-body problems

    Quantum nonlocality in the presence of superselection rules and data hiding protocols

    Get PDF
    We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum-nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.Comment: 4 page

    Polarization correlated photons from a positively charged quantum dot

    Get PDF
    Polarized cross-correlation spectroscopy on a quantum dot charged with a single hole shows the sequential emission of photons with common circular polarization. This effect is visible without magnetic field, but becomes more pronounced as the field along the quantization axis is increased. We interpret the data in terms of electron dephasing in the X+ state caused by the Overhauser field of nuclei in the dot. We predict the correlation timescale can be increased by accelerating the emission rate with cavity-QED

    Purifying two-bit quantum gates and joint measurements in cavity QED

    Full text link
    Using a cavity QED setup we show how to implement a particular joint measurement on two atoms in a fault tolerant way. Based on this scheme, we illustrate how to realize quantum communication over a noisy channel when local operations are subject to errors. We also present a scheme to perform and purify a universal two-bit gate.Comment: 4 pages RevTeX, 2 figures include

    Quantum Correlation Bounds for Quantum Information Experiments Optimization: the Wigner Inequality Case

    Full text link
    Violation of modified Wigner inequality by means binary bipartite quantum system allows the discrimination between the quantum world and the classical local-realistic one, and also ensures the security of Ekert-like quantum key distribution protocol. In this paper we study both theoretically and experimentally the bounds of quantum correlation associated to the modified Wigner's inequality finding the optimal experimental configuration for its maximal violation. We also extend this analysis to the implementation of Ekert's protocol

    Squashing Models for Optical Measurements in Quantum Communication

    Full text link
    Measurements with photodetectors necessarily need to be described in the infinite dimensional Fock space of one or several modes. For some measurements a model has been postulated which describes the full mode measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert space followed by a specified target measurement. We present a formalism to investigate whether a given measurement pair of mode and target measurements can be connected by a squashing model. We show that the measurements used in the BB84 protocol do allow a squashing description, although the six-state protocol does not. As a result, security proofs for the BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while the same does not hold for the six-state protocol.Comment: 4 pages, 2 figures. Fixed a typographical error. Replaced the six-state protocol counter-example. Conclusions of the paper are unchange
    corecore