Polarized cross-correlation spectroscopy on a quantum dot charged with a
single hole shows the sequential emission of photons with common circular
polarization. This effect is visible without magnetic field, but becomes more
pronounced as the field along the quantization axis is increased. We interpret
the data in terms of electron dephasing in the X+ state caused by the
Overhauser field of nuclei in the dot. We predict the correlation timescale can
be increased by accelerating the emission rate with cavity-QED