1,113 research outputs found

    Soft-mode turbulence in electrohydrodynamic convection of a homeotropically aligned nematic layer

    Get PDF
    The experimental study of electroconvection in a homeotropically aligned nematic ~MBBA! is reported. Thesystem undergoes a supercritical bifurcation ‘‘rest state-spatiotemporal chaos.’’ The chaos is caused by longwavelengthmodulation of the orientation of convective rolls. For the first time the observations both below andbeyond the Lifshitz point are accompanied by quantitative analysis of temporal autocorrelation functions ofturbulent modes. The dependence of the correlation time on the control parameter is obtained. A secondarybifurcation from normal to abnormal rolls is discussed

    Effective matrix model for deconfinement in pure gauge theories

    Full text link
    We construct matrix models for the deconfining phase transition in SU(N) gauge theories, without dynamical quarks, at a nonzero temperature T. We generalize models with zero and one free parameter to study a model with two free parameters: besides perturbative terms ~T^4, we introduce terms ~T^2 and ~T^0. The two N-dependent parameters are determined by fitting to data from numerical simulations on the lattice for the pressure, including the latent heat. Good agreement is found for the pressure in the semi-quark gluon plasma (QGP), which is the region from Tc, the critical temperature, to about ~4 Tc. Above ~1.2 Tc, the pressure is a sum of a perturbative term, ~ +T^4, and a simple non-perturbative term, essentially just a constant times ~ -Tc^2 T^2. For the pressure, the details of the matrix model only enter within a very narrow window, from Tc to ~1.2 Tc, whose width does not change significantly with N. Without further adjustment, the model also agrees well with lattice data for the 't Hooft loop. This is notable, because in contrast to the pressure, the 't Hooft loop is sensitive to the details of the matrix model over the entire semi-QGP. For the (renormalized) Polyakov loop, though, our results disagree sharply with those from the lattice. Matrix models provide a natural and generic explanation for why the deconfining phase transition in SU(N) gauge theories is of first order not just for three, but also for four or more colors. Lastly, we consider gauge theories where there is no strict order parameter for deconfinement, such as for a G(2) gauge group. To agree with lattice measurements, in the G(2) matrix model it is essential to add terms which generate complete eigenvalue repulsion in the confining phase.Comment: 80 pages, 26 figure

    Two-dimensional quantum interference contributions to the magnetoresistance of Nd{2-x}Ce{x}CuO{4-d} single crystals

    Full text link
    The 2D weak localization effects at low temperatures T = (0.2-4.2)K have been investigated in nonsuperconducting sample Nd{1.88}Ce{0.12}CuO{4-d} and in the normal state of the superconducting sample Nd{1.82}Ce{0.18}CuO{4-d} for B>B_c2. The phase coherence time and the effective thickness dd of a conducting CuO_2 layer have been estimated by the fitting of 2D weak localization theory expressions to the magnetoresistivity data for the normal to plane and the in-plane magnetic fields.Comment: 5 pages, 4 postscript figure

    Spectral Function of Fermion Coupled with Massive Vector Boson at Finite Temperature in Gauge Invariant Formalism

    Get PDF
    We investigate spectral properties of a fermion coupled with a massive gauge boson with a mass m at finite temperature (T) in the perturbation theory. The massive gauge boson is introduced as a U(1) gauge boson in the Stueckelberg formalism with a gauge parameter \alpha. We find that the fermion spectral function has a three-peak structure for T \sim m irrespective of the choice of the gauge parameter, while it tends to have one faint peak at the origin and two peaks corresponding to the normal fermion and anti-plasmino excitations familiar in QED in the hard thermal loop approximation for T \gg m. We show that our formalism successfully describe the fermion spectral function in the whole T region with the correct high-T limit except for the faint peak at the origin, although some care is needed for choice of the gauge parameter for T \gg m. We clarify that for T \sim m, the fermion pole is almost independent of the gauge parameter in the one-loop order, while for T \gg m, the one-loop analysis is valid only for \alpha \ll 1/g where g is the fermion-boson coupling constant, implying that the one-loop analysis can not be valid for large gauge parameters as in the unitary gauge.Comment: 28pages, 11figures. v2: typos fixe

    Fatigue crack analysis of ferrite material by acoustic emission technique

    Get PDF
    Among various methods of Non-destructive techniques (NDT), analysis using released acoustic emission (AE) waves due to crack propagation is very effective due to its dynamic monitoring features. In fragmentation theory for AE there are some proportional relationships among the AE parameters i.e. AE event, AE energy, area and volume of cracks etc., which are calculated from the released AE waves from the dynamic crack inside any material. The necessity of calculating the fractal dimension has been found in such relationships and the value is emphasized for determining the geometry of the irregularity in crack surface and crack volume. In this paper a novel approach for evaluating that value based on image processing by MATLAB is proposed. The images of the cracks during propagation are preserved and utilized to find out the fractal dimension for analyzing the crack propagation characteristics. The AE energy is also estimated from the received AE waves. The positioning of the sensors plays a great impact on this calculation. Finally, the theoretical proportionality relations of AE parameters are interpreted experimentally during crack propagation behavior in ferrite cast iron under fatigue loading

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Molecular gas, CO, and star formation in galaxies: emergent empirical relations, feedback, and the evolution of very gas-rich systems

    Full text link
    We use time-varying models of the coupled evolution of the HI, H_2 gas phases and stars in galaxy-sized numerical simulations to: a) test for the emergence of the Kennicutt-Schmidt (K-S) and the H_2-pressure relation, b) explore a realistic H_2-regulated star formation recipe which brings forth a neglected and potentially significant SF-regulating factor, and c) go beyond typical galactic environments (for which these galactic empirical relations are deduced) to explore the early evolution of very gas-rich galaxies. In this work we model low mass galaxies (M_{\rm baryon} \le 10^9 \msun), while incorporating an independent treatment of CO formation and destruction, the most important tracer molecule of H2 in galaxies, along with that for the H2 gas itself. We find that both the K-S and the H_2-pressure empirical relations can robustly emerge in galaxies after a dynamic equilibrium sets in between the various ISM states, the stellar component and its feedback. (abridged)Comment: 32 pages, 9 figures, accepted for publication in Ap
    corecore