
Title Spectral function of a fermion coupled with a massive vector
boson at finite temperature in a gauge invariant formalism

Author(s) Satow, Daisuke; Hidaka, Yoshimasa; Kunihiro, Teiji

Citation Physical Review D (2011), 83(4)

Issue Date 2011-02

URL http://hdl.handle.net/2433/139532

Right © 2011 American Physical Society

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39268091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Spectral function of a fermion coupled with a massive vector
boson at finite temperature in a gauge invariant formalism
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We investigate spectral properties of a fermion coupled with a massive gauge boson with a mass m at

finite temperature (T) in the perturbation theory. The massive gauge boson is introduced as a Uð1Þ gauge
boson in the Stueckelberg formalism with a gauge parameter �. We find that the fermion spectral function

has a three-peak structure for T �m irrespective of the choice of the gauge parameter, while it tends to

have one faint peak at the origin and two peaks corresponding to the normal fermion and antiplasmino

excitations familiar in QED in the hard thermal loop approximation for T � m. We show that our

formalism successfully describe the fermion spectral function in the whole T region with the correct

high-T limit except for the faint peak at the origin, although some care is needed for choice of the gauge

parameter for T � m. We clarify that for T �m, the fermion pole is almost independent of the gauge

parameter in the one-loop order, while for T � m, the one-loop analysis is valid only for � � 1=g where

g is the fermion-boson coupling constant, implying that the one-loop analysis cannot be valid for large

gauge parameters as in the unitary gauge.

DOI: 10.1103/PhysRevD.83.045017 PACS numbers: 11.10.Wx, 12.38.Mh

I. INTRODUCTION

It is well known that for extremely high temperature (T)
where the hard thermal loop (HTL) approximation in QED
and QCD [1–4] is valid, a fermion (quark) coupled with
thermally excited gauge fields (gluons) make collective
excitations, i.e., the normal fermion (particle) and the anti-
plasmino excitation with distinct peaks in the fermion
spectral function [4]; this feature obtained in the HTL
approximation is also known to be gauge invariant in the
sense that the fermion self-energy at one-loop order does
not depend on gauge fixing [2]. As for the lower T region, a
possible change in the spectral properties of the quark in
association with the chiral transition in QCD was inves-
tigated [5], using the Nambu-Jona-Lasinio model [6], and it
is shown that the coupling with the chiral soft modes [7]
makes the quark spectral function have distinct three peaks
near but above the critical temperature of chiral transition.
The appearance of such a novel spectral function at T �m
was later confirmed [8] for a massless fermion coupled with
an elementary massive boson with a massm, irrespective of
the type of the massive boson. The mechanism for realizing
the three-peak structure in the spectral function was also
elucidated [8] in terms of the Landau damping owing to the
collisions of the fermion with thermally excited bosons.1

Then one may naturally ask a question if the fermion
spectral function at T �m would smoothly connect with
that at extremely high T, i.e., the HTL result in QED/QCD:

If this is not the case, it means that we do not have a unified
understanding of the fermion spectral properties in the
whole T region. Partly to answer this question, we inves-
tigate the spectral properties of a fermion coupled with a
massive vector boson introduced as a Uð1Þ gauge boson in
the (generalized) Stueckelberg formalism with a gauge
parameter � [10,11], and carefully examine their possible
gauge dependence at T � 0, at the one-loop order as in [8].
Here the spectral properties include the number of the
fermion poles, the pole position in the complex energy
plane, and the spectral function in the momentum-energy
plane. We are also interested in how the quasiparticle
nature of the fermion is realized or destroyed by the
coupling with a massive boson at finite T.
We find that the present formalism gives a valid descrip-

tion of the fermion coupled with a massive vector boson for
the whole temperature (T) region at one-loop order in a
unified way; thereby we reveal the characteristics of the
fermion spectral properties depending on the distinct T
regions, i.e., (I) T � m, (II) T �m, and (III) T � m. In
particular, we shall show that the fermion spectral function
certainly tends to have a three-peak structure for T �m in
the small momentum region with supports in the positive,
zero, and negative energy regions.
The investigation of the possible gauge dependence

turns out to be involved due to the appearance of a novel
mass scale

ffiffiffiffi
�

p
m, inherent in the present formalism, as well

as the boson mass m and temperature T. One should re-
mark here that the Proca formalism adopted in [8] is not
adequate for this purpose, because this formalism corre-
sponds to a specific gauge-fixing with � ! 1 (unitary
gauge), and does not lead to the proper high-T limit, or
m=T ! 0, which should be the HTL approximation in
QED at the one-loop level [4]. This is the reason why we
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1This feature where the three-peak structure arises at T �m is

not altered even for a massive fermion with a mass mf as long as
mf is not too large compared with m [9].
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have adopted the Stueckelberg formalism to describe the
massive vector boson. We remark that although the pole
position is gauge independent in the exact calculation [12],
a gauge dependence of the fermion pole may appear in the
perturbation theory at finite T in general. Since the Proca
formalism corresponding to the limit � ! 1 leads to a
wrong high-T limit, an adequate gauge-parameter region
should exist in which the results in the perturbation theory
hardly show gauge dependence: Indeed, we show that this
is the case in the present work.

There are some physical situations to which the present
analysis can have relevance since massive vector bosons
exist or appear at finite T in various physical systems. In
QCD, vector bosons or vector-bosonic modes, for example,
may become a soft mode associated to the restoration of
chiral symmetry at finite T [13]. Moreover vector-bosonic
modes might exist even in the deconfined and chiral sym-
metric phase in the vicinity of the critical temperature Tc.
In the electroweak theory, neutrinos may modify their
dispersion relations in a drastic way at high T through
scatterings with the weak bosons whose masses would
change with T [14]. We shall present the physical impli-
cation of the present results to various physical systems,
including the above examples in the concluding remarks.

This paper is organized as follows. In Sec. II, we for-
mulate the Uð1Þ gauge theory in which the gauge boson
acquires finite mass. We perform a calculation of a fermion
self-energy at finite temperature. In Sec. III, the numerical
results of the fermion spectral properties are shown. In
Sec. IV, we discuss the gauge dependence of the fermion
pole appearing when T � m in an analytic way. Section V
is devoted to a summary and concluding remarks. In
Appendix A, we briefly describe how the Abelian-Higgs
model is reduced to the massive gauge theory in the
Stueckelberg formalism. In Appendix B, we present de-
tailed calculational procedures for the fermion self-energy
in our model. Appendix C is devoted to making an order
estimate of some terms appearing in the text.

II. Uð1Þ GAUGE THEORY WITH
MASSIVE GAUGE BOSON

In this section, we formulate the Uð1Þ gauge theory with
a massive gauge boson, and introduce a propagator and a
spectral function at finite temperature in the imaginary
time formalism [15,16]. We perform a calculation of the
self-energy of a fermion coupled with a massive vector
boson at one-loop order.

A. General formalism

First, we introduce a Uð1Þ gauge theory with a massive
gauge boson. The gauge boson acquires a mass by the
Higgs mechanism, keeping the gauge symmetry. The
gauge theory is one way to construct a renormalizable
quantum field theory with a massive vector boson. We
employ the Stueckelberg formalism [10,11] proposed

long ago, which is equivalent to the Abelian-Higgs model
with a constant absolute value of the Higgs field [11,17].
This correspondence is reviewed in Appendix A. Then our
Lagrangian reads

L ¼ � 1

4
F��F

�� þ 1

2
m2

�
A� � @�B

m

��
A� � @�B

m

�

þ �c ðið@� � igA�Þ��Þc þLGF; (2.1)

where A�, B, and c are a massive vector, a scalar, and a

fermion field, respectively. The scalar field B is called the
Stueckelberg field, which corresponds to the phase of the
Higgs field in the Abelian-Higgs model. F�� ¼ @�A� �
@�A� is a field strength, g the coupling constant, m the

vector boson mass, and � is a gauge parameter. LGF is the
gauge fixing term defined by

L GF � � 1

2�
ð@�A� þ �mBÞ2: (2.2)

We work with the Minkowski metric, g�� ¼
diagð1;�1;�1;�1Þ.We shall deal with amassless fermion
assuming that the mass is neglected, which should be valid
at high temperatures. Our Lagrangian is invariant under the
gauge transformation except for the gauge fixing term,LGF:

c ðxÞ ! eig�ðxÞc ðxÞ; (2.3)

A�ðxÞ ! A�ðxÞ þ @��ðxÞ; (2.4)

BðxÞ ! BðxÞ þm�ðxÞ: (2.5)

There is no interaction between the Stueckelberg field and
the fermion field, and we chose the gauge fixing term so that
the interaction term between the vector field and the
Stueckelberg field vanishes. We can drop the Stueckelberg
field as far as a correlation function is concerned, while it
cannot be when the thermodynamic potential is considered,
where it is important to take into account the correct degrees
of freedom.
The propagator of the free massive vector boson is now

given by

D��ðpÞ ¼ �1

p2 �m2

�
g�� �

p�p�

p2 �m2�
ð1� �Þ

�
: (2.6)

In the � ! 1 limit, the propagator tends to

D��ðpÞ ! �1

p2 �m2

�
g�� �

p�p�

m2

�
; (2.7)

which is the massive vector-boson propagator in the Proca
formalism.2

2Here we note that the propagator in the Proca formalism does
not vanish but rather approaches a constant value in the p ! 1
limit, in contrast to that in the Stueckelberg formalism. This
causes the nonrenormalizability and leads to bad behavior at
high temperature [8,18,19].
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The fermion propagator GðpÞ in the imaginary time
formalism [15,16] is expressed with the self-energy
�ðpÞ as

GðpÞ ¼ 1

p��ðpÞ ; (2.8)

where p0 ¼ i!m ¼ ið2mþ 1Þ�T is the Matsubara
frequency for the fermion. Note that GðpÞ and �ðpÞ are
4� 4 matrices with the spinor indices. The retarded fer-
mion propagator is given by an analytic continuation,
i!m ! !þ i�:

GRðp; !Þ ¼ Gðp; !þ i�Þ ¼ 1

!�0 � p � ���Rðp; !Þ ;
(2.9)

where the retarded self-energy is given by

�Rðp; !Þ ¼ �ðp; !þ i�Þ: (2.10)

Introducing the projection operator on the (anti-)particle

sector ��ðkÞ ¼ ð1� �0� � k̂Þ=2, we can decompose the
retarded propagator and self-energy into the respective
sector as follows:

GRðp;!Þ¼Gþðp;!Þ�þðpÞ�0þG�ðp;!Þ��ðpÞ�0;

(2.11)

�Rðp; !Þ ¼ �þðp; !Þ�þðpÞ�0 þ ��ðp; !Þ��ðpÞ�0;

(2.12)

with ��ðp; !Þ ¼ Trð�Rðp; !Þ��ðpÞ�0Þ=2.
In the particle sector, the pole !p ¼ !ðpÞ satisfies the

following equation:

G�1þ ðp; !pÞ ¼ !p � jpj � �þðp; !pÞ ¼ 0: (2.13)

From the analyticity of the retarded propagator, the pole is
located on the real axis or the lower half plane of complex
!. If the imaginary part of the pole is small, the pole is well
described in terms of a quasiparticle picture, where the real
part of the pole corresponds to the energy, while the
imaginary part to the decay width of the quasiparticle. If
the imaginary part is large, then it would be meaningless to
consider excitations in terms of any particle picture. It is
known that the self-energy at zero momentum has the
following symmetry:

Re�þð0;�!Þ ¼ �Re�þð0; !Þ; (2.14)

Im�þð0;�!Þ ¼ Im�þð0; !Þ; (2.15)

which implies that if there exists a fermion pole at z ¼
!� i� at zero momentum, there is also a pole at�!� i�
at zero momentum.

Once the self-energy ��ðp; !Þ is obtained, the spectral
function of the (anti-)particle sector is expressed as

��ðp;!Þ
¼� 1

�
ImG�ðp;!Þ

¼� 1

�

Im��ðp;!Þ
ð!	jpj�Re��ðp;!ÞÞ2 þ Im�2�ðp;!Þ : (2.16)

When the peak is narrow enough, the position of the peak is
given by !p ¼ jpj þ Re�þðp; !pÞ, and the width of the

peak is given by �Im�þðp; !pÞ=ð2!pÞ.

B. Calculation at one-loop order

Now let us evaluate the self-energy �ðpÞ at one-loop
order; the corresponding diagram is shown in Fig. 1. �ðpÞ
is expressed as

�ðp; i!mÞ ¼ �g2T
X
n

Z d3k

ð2�Þ3 �
�G0ðk; i!nÞ��D��

� ðp� k; i!m � i!nÞ

¼ g2T
X
n

Z d3k

ð2�Þ3 �
� k

k2
�� 1

l2 �m2

�
�
g�� � ð1� �Þ l�l�

l2 �m2�

�
; (2.17)

where G0 is the propagator of the free fermion, l � p� k,
and k0 ¼ i!n ¼ ið2nþ 1ÞT. Some manipulations lead to

�ðp; i!mÞ¼�2g2�� ~B�ðp; i!m;mÞ

þ g2

m2
½pðp2ð ~Bðp;i!m;

ffiffiffiffi
�

p
mÞ� ~Bðp; i!m;mÞÞ

�m2ð� ~Bðp; i!m;
ffiffiffiffi
�

p
mÞ� ~Bðp; i!m;mÞÞÞ

�p2��ð ~B�ðp; i!m;
ffiffiffiffi
�

p
mÞ� ~B�ðp; i!m;mÞÞ
:

(2.18)

The retarded self-energy �Rðp; !Þ in the one-loop
approximation is given by the analytic continuation i!m !
!þ i� from �ðp; i!mÞ. Here, we have introduced the
following loop functions:

~Bðp; i!m;mÞ � T
X
n

Z d3k

ð2�Þ3
1

ðk� pÞ2 �m2

1

k2
;

(2.19)

FIG. 1. The diagram which contributes to the fermion self-
energy at one-loop order. The solid line represents the fermion
and the wavy line represents the massive vector boson.
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~B�ðp; i!m;mÞ � T
X
n

Z d3k

ð2�Þ3
k�

ðk� pÞ2 �m2

1

k2
:

(2.20)

We see that there are two kinds of mass in Eq. (2.18),m andffiffiffiffi
�

p
m, the latter of which is unphysical because it depends

on the gauge parameter. However, the existence of such an
unphysical mass causes two different high temperature
limits as will be shown in Sec. IV. We will also show that
�ðpÞ approaches the fermion self-energy in QED if we

take the massless limit m ! 0, which is not the case in the
Proca formalism. It should be noted here that Eq. (2.18)
shows that there is a special value of �: when � ¼ 1, the
terms containing the unphysical mass are all cancelled out
and only the first term remains, i.e., �ðp; i!mÞ�¼1 ¼
�2g2��

~B�ðp; i!m;mÞ.
The self-energy in the (anti-)particle sector in the

one-loop approximation is given by ��ðp; !Þ ¼
Trð�Rðp; !Þ��ðpÞ�0Þ=2. Then, as is derived in
Appendix B, we have for the imaginary part of �þðp; !Þ,

Im�þðp;!Þ¼� g2

32�jpj2m2

Z E0�
f

E0þ
f

dEfðfðEfÞþnðEf�!ÞÞ½ð�p2þm2�Þðjpj�!Þ2þ2p2Efð!�jpjÞ


þ g2

32�jpj2m2
�ð�p2Þ½p2ð!�jpjÞ�2T2þ!ð!�jpjÞð�!p2�ð!�jpjÞð�p2þm2�ÞÞ


þ g2

32�jpj2m2

Z E�
f

Eþ
f

dEfðfðEfÞþnðEf�!ÞÞ½ð�p2þm2Þððjpj�!Þ2�2m2Þþ2ðp2�2m2ÞEfð!�jpjÞ


� g2

32�jpj2m2
�ð�p2Þ½ðp2�2m2Þð!�jpjÞ�2T2þ!½2m4�p2ðjpjð!�jpjÞþm2Þ

; (2.21)

where p2 ¼ !2 � jpj2, E�
f ¼ ð!2 � jpj2 �m2Þ=ð2ð!�

jpjÞÞ and E0�
f ¼ ð!2 � jpj2 � �m2Þ=ð2ð!� jpjÞÞ.

The real part Re�þðp; !Þ may be obtained using the
dispersion relation from the imaginary part. Especially, the
finite temperature part of the real part of the self-energy,
�þðp; !ÞT�0 � �þðp; !Þ � �þðp; !ÞT¼0, is expressed as

Re�þðp;!ÞT�0¼� 1

�
P
Z 1

�1
d!0 Im�þðp;!0ÞT�0

!�!0 :

(2.22)

Here P denotes the principal value. The zero temperature
part ofRe�þðp; !Þ is not determined by Eq. (2.22) because
it has ultraviolet divergence. We make renormalization
using twice-subtracted dispersion relation, which reads

Re�þðp; !ÞT¼0 ¼ c0 þ c1ð!� jpjÞ

þ ð!� jpjÞ2
�

P
Z 1

�1
dz

Im�þðp; zÞT¼0

ðz� jpjÞ2ðz�!Þ : (2.23)

We impose the on-shell renormalization condition,
�þðp; ! ¼ jpjÞ ¼ 0 and @�þðp; !Þ=@!j!¼jpj ¼ 0, to de-

termine c0 and c1. The vacuum part of Im�þðp; !Þ is
obtained by taking the T ! 0 limit of Eq. (2.21);

Im�þðp; !ÞT¼0 ¼ g2

32�m2

sgnð!Þ
p2

ð!� jpjÞ

�
�
�ðp2 � �m2Þðp2 � �m2Þ2

� �ðp2 �m2Þ ðp
2 þ 2m2Þðp2 �m2Þ2

p2

�
:

(2.24)

Thus, we arrive at

Re�þðp;!ÞT¼0¼ g2p2

32�2m2
ð!�jpjÞ

�
2m4

p4
�ð2þ�Þm

2

p2

þ ln

��������
p2�m2

p2�m2�

��������þ�
m2

p2

�
�2þm2�

p2

�
ln

��������
�ðp2�m2Þ
p2�m2�

��������
þm2

p2

�
�2�þð3þ�2Þm

2

p2
�2

m4

p4

�
ln

��������
m2

p2�m2

��������
�
:

(2.25)

As mentioned before, our theory based on the
Stueckelberg formalism approaches QED at high enough
temperature where the masses are negligible in comparison
with T. Let us see this. For T � gT � m,

ffiffiffiffi
�

p
m, the

imaginary and real part of the self-energy are reduced to

Im�þðp; !ÞT!1 ’ g2

32�jpj2m2
�ð�p2Þ½p2ð!� jpjÞ�2T2

� ðp2 � 2m2Þð!� jpjÞ�2T2


¼ g2�ð�p2Þ
16jpj2 �T2ð!� jpjÞ; (2.26)

Re�þðp;!ÞT!1’ g2T2

16jpj2
�
2jpjþðjpj�!Þ ln

��������
!þjpj
!�jpj

��������
�
;

(2.27)

respectively. Here, we have retained only the terms that are
proportional to T2 in Eq. (2.21). These equations, (2.26)
and (2.27), coincide exactly with the well-known results in
the HTL approximation in QED [1–4]. There is a caveat in
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the above manipulation, which has been taken for granted
in the usual derivation of the HTL approximation in the
gauge theory: The ignored terms may become comparable
to terms that are proportional to T2 in some gauges and
hence the above naive power counting turns out to be
invalid. We will analyze this possibility in Sec. IV.

III. NUMERICAL RESULTS

In this section, we show the numerical results of the
fermion spectral function and the fermion poles at various
temperatures. In the following, the coupling constant is
fixed to a small value, g ¼ 0:5, so that the analysis based
on the one-loop calculation can be valid: Except when the
coupling constant dependence of the pole is analyzed, the
coupling constant will be fixed to g ¼ 0:5. On the other

hand, the gauge parameter, �, will be varied freely in order
to see the gauge dependence of the spectral properties of
the fermion calculated at the one-loop level.

A. Low temperature (T � m)

In this subsection, we show numerical results at a tem-
perature so low that the T dependence of the results is
hardly seen, which may check the validity of our analytical
and numerical calculations.
Figure 2 shows the fermion spectral function in the

particle sector (with a positive particle number) at T ¼
0:4m for � ¼ 1. Avery narrow peak appears near! ¼ jpj,
which is very reminiscent of the zero temperature case.
This is natural for T � m, because the thermal effect is
exponentially suppressed by the Boltzmann factor
� expð�m=TÞ, and hence the breaking of Lorentz symme-
try is small. This small breaking of Lorentz symmetry
implies that the particle pole is almost an on-shell value
at T ¼ 0, i.e.,! ¼ jpj, and hence the gauge dependence of
the pole hardly appears.

B. Intermediate temperature (T�m)

We plot the spectral function of the particle sector at
T=m ¼ 1:0, 1.5, 2.0, 2.5 for � ¼ 1 in Fig. 3. We can see
that the spectral function at these temperatures have struc-
tures qualitatively different from that at low temperature:
Even at T=m ¼ 1:0, we see a split of a peak around the
origin, seen in Fig. 2 into two peaks with a small bump in
the negative energy region, which is reminiscent of the
antiplasmino peak known in QED/QCD at high T. These

 0

 0.5

 1
-1

 0
 1

 20

 40

ρ+m

p/m

ω/m

FIG. 2 (color online). The fermion spectral function in the
particle sector �þ as a function of energy ! and momentum p
for T ¼ 0:4m, g ¼ 0:5, � ¼ 1.
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 0.4
-1  0  1

 5

 10

T/m=2.0
ρ+m

p/m

ω/m

 0

 0.2

 0.4
-1  0  1
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T/m=2.5
ρ+m

p/m

ω/m

 0

 0.2

 0.4
-1  0  1
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 10

T/m=1.0
ρ+m

p/m

ω/m

 0

 0.2

 0.4
-1  0  1

 5

 10

T/m=1.5
ρ+m

p/m

ω/m

FIG. 3 (color online). The fermion spectral function in the particle sector �þ as a function of energy ! and momentum p at g ¼ 0:5,
� ¼ 1 at various temperatures.
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features are enhanced as T is raised, and we see a clear
three-peak structure around jpj ¼ 0 at T=m ¼ 2:0 with a
prominent peak and a clear bump in the positive and
negative energy region, respectively. We also see that
the peak near the origin is attenuated as T is further raised
up to 2:5m.

Since it is known that the details of the shape of the
spectral function may be gauge dependent in general, let us
see how the three-peak structure depends on the gauge
parameter. Figure 4 shows the gauge-parameter depen-
dence of the fermion spectral function in the particle sector
at T ¼ 2:0m; the gauge parameter is varied as � ¼ 0:1, 1,
10, and 100. One might find only a single curve of the
spectral function in the figure, although this figure actually
shows four curves of it with different�; thus, it clearly tells
us that the shape of the spectral function at T ¼ 2m with a
three-peak structure is virtually independent of the gauge
parameter.

The virtual gauge independence of the shape of the
spectral function implies that the pole of the propagator
is also the case. We show the gauge (in)dependence of the
pole in the positive energy region at jpj ¼ 0 with a particle
number in the left panel of Fig. 5, which shows that the
pole position is almost independent of the choice of
the gauge parameter, as anticipated: Note that the gauge
parameter is varied in a wider range than in Fig. 4, i.e.,
� ¼ 0:01, 0.1, 1, 10, 100, 1000. A remark is in order here:
The pole in the negative energy region at jpj ¼ 0 has the
same properties as that in the positive energy region, as is
assured by Eqs. (2.14) and (2.15).

Such a gauge independence of the poles necessarily
reflects in that of the spectral function. The right panel of
Fig. 5 shows the fermion spectral function at zero momen-
tum for the wide range of � up to 1000, together with that
obtained in the Proca formalism.3 From this figure, we
confirm that the spectral function at zero momentum is
virtually gauge independent for the wide range of �.

We also note that the position and the width of the peaks
coincide with the real and imaginary part of the poles,
respectively, which is due to the fact that the imaginary
part of the poles is small in comparison with the real part,
as seen in the left panel of Fig. 5. Thus, the shape of the
spectral function with a three-peak structure necessarily
gets to have almost no gauge dependence.
We show the coupling constant dependence of the fer-

mion pole at zero momentum in Fig. 6 for T=m ¼ 2:0. The
real part is almost proportional to g, like that in QED in the
HTL approximation. The coupling constant dependence of
the imaginary part is not large.
What is the mechanism for realizing the three-peak

structure of the fermion spectral function? Figure 7 shows
the real and imaginary part of the self-energy for T=m ¼
2:0 and � ¼ 1:0 at jpj ¼ 0, together with the correspond-
ing spectral function. A detailed analysis of the imaginary
part tells us that the peaks of the imaginary part corre-
spond to a Landau damping of the fermion by a scattering
with thermally excited bosons. Since these features of the
fermion self-energy are very similar to those shown in [8],
the mechanism for realizing the three-peak structure
found in our formalism is understood to be the same as
discussed in [8].

C. High temperature (T � m)

In this subsection, we show numerical results in the high
temperature (T � m) region, where the mass of the vector
boson (and the fermion) can be neglected in comparison
with T, i.e., m=T ! 0; this means that T itself may not be
infinitely large.
We show the fermion pole in the positive energy region

in the left panel of Fig. 8 at T ¼ 40:0m and for � ¼ 0:1, 1,
10 and 100. The pole in the Proca formalism and that in the
HTL approximation in QED are also shown. We see that
the gauge dependence of the fermion pole is no longer
negligible. Since the exact pole position in the complex
energy plane should be gauge independent [12], the above
result suggests that the one-loop analysis is no longer valid
in this high-T region in contrast to the T � m and T �m
regions, at least in some gauge fixing. We will present a
detailed discussion on how the gauge dependence arises at
the high T region in Sec. IV.
One should notice that the pole for � ¼ 0:1 is located in

the upper energy plane, which could be problematic be-
cause it implies a loss of the analyticity of the retarded
propagator and also the negativeness of the spectral func-
tion, as seen from Eq. (2.16).
For �� 1, there appear clear two peaks in the spectral

function in a robust way, as shown in Fig. 9; the two peaks
are found to tend to the normal fermion(particle) and the
antiplasmino of QED in the HTL approximation [1–4],
respectively; see Sec. IV.
The other peak persists at the origin in the energy-

momentum space. One can confirm that its residue is of

 0

 0.2

 0.4
-1

 0
 1

 5

 10

ρ+m α=0.1
α=1.0

α=10.0
α=100.0

p/m

ω/m

FIG. 4 (color online). The spectral fermion function in the
particle sector �þ as a function of energy ! and momentum p
at T ¼ 2:0m, g ¼ 0:5.

3The rapid decrease of the spectral function in j!j � 0:1 is
caused by the exponential damping of Im�þð0; !Þ in that region.
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the order of m4=ðg2T4Þ, which is very small if we consider
the gT � m case, by making power counting. Such a peak
at the origin was also obtained in [8], though in the Proca
formalism. One should also remark that such a peak at the
zero energy is not obtained in QED in the HTL approxi-
mation, in which the vector boson mass is set to zero from
the beginning, in contrast to the present case.4 It should be
intriguing to explore whether this peak at the origin ex-
tends to a finite-jpj region, and hence the three-peak
structure of the fermion spectral function persists even in
such a high-T region, i.e., for T � m. In fact, this is a
challenging problem in quantum field theory at finite tem-
perature, because a sensible analysis of such an infrared
region requires a systematic method to remove the so-
called pinch singularities [20]. This task is beyond the

scope of the present work, and we leave such an analysis
to a future work [21].
Our numerical calculation has shown that one can have

virtually gauge-independent results even in the one-loop
analysis if the gauge parameter is in the region �� 1. We
shall argue in Sec. IV that the perturbative expansion
should be valid for � � 1=g. It means that the spectral
function of a fermion coupled with a massive vector boson
as calculated in the Stueckelberg formalism nicely ap-
proaches that in QED in the HTL approximation at high
T irrespective of the choice of the gauge parameter �, if
the order of � is confined to � � 1=g. This is actually
already suggested by the asymptotic form Eq. (2.27) for
T � m,

ffiffiffiffi
�

p
m.

IV. ANALYSIS OF GAUGE DEPENDENCE OF
THE POLE AT HIGH TEMPERATURE (T � m)

The pole position of the fermion propagator is virtually
independent of the gauge parameter � for the cases of
T � m and T �m: The former case is simply because
the thermal contribution due to a boson with a mass m is

-0.3

-0.2

-0.1

 0

 0  0.1  0.2  0.3  0.4  0.5

Im
 (

ω
/m

)

Re (ω/m)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6

R
e 

(ω
/m

)

g

FIG. 6 (color online). The left panel shows the coupling constant dependence of the fermion pole with a particle number in the
positive energy region for T=m ¼ 2:0 and � ¼ 1:0, at zero momentum: the horizontal and the vertical axis denote the real and
imaginary part of the energy, respectively. The dots from left to right correspond to g ¼ 0:1, 0.2, 0.3, 0.4, 0.5, respectively. The right
panel shows the coupling constant dependence of the real part of the fermion(particle) pole in the positive energy region at zero
momentum for the same T=m and �. The solid line is the fitted linear function.

-0.1

-0.05

 0

 0  0.2  0.4

Im
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ω
/m

)

Re (ω/m)

α=0.01
α=0.1
α=1.0

α=10.0
α=100.0

α=1000.0
Proca

 0

 1

 2

 3

-1 -0.5  0  0.5  1

ρ +
m

ω/m

α=0.01
α=0.1
α=1.0

α=10.0
α=100.0

α=1000.0
Proca

FIG. 5 (color online). The left panel shows the gauge dependence of the fermion pole with a positive particle number in the positive
energy region for T ¼ 2:0m, g ¼ 0:5 at zero momentum: the horizontal and vertical axes denote the real and imaginary part of the
energy, respectively. The right panel shows the fermion spectral function in the particle sector �þ as a function of energy ! for the
same T, g as in the left panel.

4The absence of a peak at the vanishing energy in QED with
the HTL approximation is easily understood as follows: In the
HTL approximation of QED, Re�þð0; !Þ behaves as 1=! in the
! ! 0 limit. Thus, at ! ¼ 0, the pole condition Eq. (2.13) will
not be satisfied and hence a pole at the origin cannot exist.
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greatly suppressed by a Boltzmann factor expð�m=TÞ �
1 when T � m. By contrast, for T � m, the numerical
results in Sec. III C show that the pole of the fermion
propagator has a large gauge dependence for large �. In
this section, we discuss the gauge dependence of the pole
of the fermion propagator at weak coupling at high tem-
perature. In particular, we focus on the region gT � m. In
this region, one expects that the mass of the vector boson
can be neglected, and thus the self-energy approach that in
the HTL approximation of QED [1–4], in which the

fermion has the pole of order gT. Therefore, we analyze
the pole of the fermion propagator by assuming !� gT.
Here we introduce a small dimensionless parameter,

	 �
�
m

gT

�
2 � 1: (4.1)

Thus, we have two small dimensionless parameters, g and
	, which are treated as independent parameters, so that the
self-energy is expanded by combined powers of g and 	. If
the power of g and 	 are both positive, the high tempera-
ture limit will be well defined and smoothly connected to
that of QED. However, as will be shown below, an inverse
power of 	 appears at the one-loop level when the gauge
parameter is large, and hence the high temperature limit
becomes inevitably different from that of QED.
In the following analysis, we put jpj ¼ 0 for simplicity.

The pole position obtained in the perturbation theory gen-
erally depends on the gauge parameter as well as g, 	, and
T due to the truncation of the perturbative expansion. We
parametrize the pole !pole of the fermion propagator as

!pole ¼ gTFðg; 	; �Þ; (4.2)

where Fðg; 	; �Þ is a function of order one, and depends on
the gauge parameter �. If the limit,

F0 � lim
g!0

Fðg; 	; �Þ (4.3)

is independent of �, then the pole is independent of the
gauge parameter at the order gT. Thus, one sees that the
gauge-dependent part may be defined by


!poleðg; 	; �Þ � !poleðg; 	; �Þ �!0
poleð	Þ; (4.4)

where !0
poleð	Þ � gTF0ð	Þ. As a reference, we recall that

F0ð	 ¼ 0Þ ¼ 1=ð2 ffiffiffi
2

p Þ in the case of QED [4]. When the
inequality

!0
poleð	Þ � 
!poleðg; 	; �Þ (4.5)

is satisfied, the gauge dependence can be neglected. In
reality with a finite g, the region of the gauge parameter

 0
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ρ +
m

-1

-0.5

 0

 0.5

-0.5  0  0.5
ω/m

ReΣ+/m
ImΣ+/m

ω/m

FIG. 7 (color online). The upper figure shows the fermion
spectral function in the particle sector �þ as a function of energy
! for g ¼ 0:5, T ¼ 2:0m, and � ¼ 1. The lower figure shows
the real part and the imaginary part of the fermion self-energy as
functions of energy ! for the same g, T, and �. The dotted line
denotes !. The intersection points between this line and
Re�þð0; !Þ are the solutions of the dispersion relation.
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FIG. 8 (color online). The left panel shows the gauge dependence of the fermion pole at p ¼ 0 in the positive energy region at
T ¼ 40:0m for g ¼ 0:5: The horizontal and the vertical axis denote the real and imaginary part of energy. The right panel shows the
fermion spectral function in the particle sector �þ as a function of energy ! for the same T and g.
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satisfying Eq. (4.5) will be limited. We shall call the region
that the gauge parameter satisfies Eq. (4.5) an adequate
gauge-parameter region. The purpose of this section is to
find the adequate gauge-parameter region.

Let us first show a numerical result of the real and the
imaginary part of the pole at T ¼ 40:0m as functions of �
in Fig. 10: For a large � (1 � �), the � dependence of the
real part of the pole is large, and especially for very large
�, say �� 3� 104, the magnitude of it is no longer of
OðgTÞ, but is of a smaller order, OðmÞ, as will be shown
later. The imaginary part of the pole for � � 1 is positive
and apparently problematic because it means that the
analyticity of the retarded propagator is lost and the fer-
mion spectral function will become negative. As we shall
show later, however, the absolute value of the imaginary
part is of Oðg2TÞ and should be considered together with
higher order contributions. So the negative imaginary part
with a small absolute value can be ignored in this order of
the coupling.

Now we shall show that such an order estimate of the
pole can be done analytically. We start with an analysis of
the self-energy, under the condition that !� gT, by
decomposing the self-energy (2.18) to seven parts,

�þð0; !Þ � !Cð!Þ ¼ !
X7
n¼1

Cnð!Þ; (4.6)

where we have introduced the following dimensionless
functions:

C1ð!Þ ¼ � 2g2

!
~B0ð0; !;mÞ; (4.7)

C2ð!Þ ¼ þg2!2

m2
~Bð0; !;

ffiffiffiffi
�

p
mÞ; (4.8)

C3ð!Þ ¼ � g2!2

m2
~Bð0; !;mÞ; (4.9)

C4ð!Þ ¼ �g2� ~Bð0; !;
ffiffiffiffi
�

p
mÞ; (4.10)

C5ð!Þ ¼ þg2 ~Bð0; !;mÞ; (4.11)

C6ð!Þ ¼ �g2!

m2
~B0ð0; !;

ffiffiffiffi
�

p
mÞ; (4.12)

C7ð!Þ ¼ þg2!

m2
~B0ð0; !;mÞ: (4.13)

Here ~Bð0; !;mÞ and ~B0ð0; !;mÞ are obtained by perform-
ing the analytic continuation (i!m ! !þ i�) to
~Bð0; i!m;mÞ and ~B0ð0; i!m;mÞ. From Eq. (2.13), one
sees that the poles satisfy the condition

Cð!poleÞ ¼ 1: (4.14)

We first note that if the following equation has a root,

lim
g!0

CðgTFÞ ¼ 1; (4.15)

 0
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 0.2 -0.5
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 40

ρ+gT

p/gT

ω/gT

FIG. 9 (color online). The fermion spectral function in the
particle sector �þ as a function of energy ! and momentum p
at T ¼ 40:0m with g ¼ 0:5 and � ¼ 1.
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FIG. 10 (color online). The upper panel shows the gauge
dependence of the real part of the pole in the positive energy
region at zero momentum at T ¼ 40:0m, for g ¼ 0:5. The
horizontal and the vertical axes denote the gauge parameter �
and the real part of the pole, respectively. The data whose � is
smaller than the upper limit of adequate gauge parameter, 1=g ¼
2:0, are denoted by the solid line and the data whose � is larger
than 1=g by the dotted line. The data which satisfy �>
1=ðg2	Þ ¼ 1600, which are expected to approach the value in
the Proca formalism, are plotted with another dotted line. The
upper and lower dashed lines show the thermal mass in the HTL
approximation gT=ð2 ffiffiffi

2
p Þ and that in the Proca formalismffiffiffi

6
p

m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48	

p ’ 2:31m, respectively. The lower panel shows
the gauge dependence of the imaginary part of the pole for the
same T and g as in the upper panel.
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there is a pole !pole ¼ gTF of order gT. Furthermore, if

the F happens to be independent of �, the pole is gauge
independent. Therefore, let us take the following function
as a measure of the gauge dependence, instead of Eq. (4.4):


Cðg; 	; �Þ � Cð!0
poleÞ � 1: (4.16)

Then a criterion for the adequate gauge-parameter region
may be given by


Cðg; 	; �Þ � 1: (4.17)

We now make an order estimate of the seven terms
defined in Eqs. (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), and
(4.13). One finds that this task is reduced to that of
~Bð0; !;mÞ and ~B0ð0; !;mÞ. The following relations are
shown in Appendix C:

(i) When T � ! � M,

~Bð0; !;MÞ � T

!
;

~B0ð0; !;MÞ
!

� T2

!2
: (4.18)

(ii) When T � M � !,

~Bð0; !;MÞ �
8><
>:

T
! for M2 � !T

T2

M2 for M2 � !T
;

~B0ð0; !;MÞ
!

�
8><
>:

T2

!2 for M2 � !T

T4

M4 for M2 � !T
: (4.19)

(iii) When M � T � !,

~Bð0;!;MÞ� T2

M2
;

~B0ð0;!;MÞ
!

� T4

M4
: (4.20)

Here, M denotes m or
ffiffiffiffi
�

p
m, and the vacuum parts have

been dropped. Using these relations, we will find the
adequate gauge-parameter region in the following subsec-
tions, and the result is summarized in Fig. 11, which shows
that the adequate gauge parameter is � � 1=g.

C1ð!Þ, C3ð!Þ, C5ð!Þ, and C7ð!Þ, which do not depend
on the gauge parameter, are estimated to be

C1ð!Þ ’ g2
T2

8!2
� 1; C3ð!Þ � g

�
1

	

�
;

C5ð!Þ � g; C7ð!Þ �
�
1

	

�
:

(4.21)

We remark that C1ð!Þ coincides with the fermion self-
energy in the HTL approximation in QED, as it should.

We note that C3ð!Þ and C7ð!Þ are of the order of an
inverse power of 	, which would make it impossible to
take the massless limit. These ‘‘dangerous’’ terms are
found to be nicely canceled out with other Cið!Þ’s when
� is not so large, whereas for large �, the cancellation does

not happen, and the condition 
C � 1 cannot be satisfied,
as will be shown below.

A. 1 � �� (case 1)

When 1 � �	, the mass scale m and
ffiffiffiffi
�

p
m are negli-

gible in comparison with gT, and then the self-energy
coincides with that in the HTL approximation in QED in
this approximation, because the nonleading terms can be
neglected as we have seen in Sec. II.
Due to the order estimate in Eq. (4.18), we obtain

C2ð!Þ�g

�
1

	

�
; C4ð!Þ�g�; C6ð!Þ�

�
1

	

�
: (4.22)

The leading terms of C2ð!Þ and C6ð!Þ cancel out5 with
C3ð!Þ and C7ð!Þ, respectively, and the terms of the order
g� and g remain.6 Thus, one sees that the gauge-dependent
part is of the order of g�, whichmeans that the pole is gauge
independent in practice, which also can be confirmed from
Fig. 10, provided that the inequality� � 1=g is satisfied; in
this case, the adequate gauge-parameter region is the region
of � which satisfies the above inequality.
Let us see that the imaginary part of the self-energy is of

order g2T in the Landau gauge (� ¼ 0). For � ¼ 0, the
imaginary part of the self-energy is evaluated to be

1

1/g0

(a) g

1 32

α
∞1/λ 1/(      )g2

(b) g

3

0 ∞g21/(      )
α

1 22

1/g

λ

λ

λ

>

1/λ

< λ

FIG. 11. The classification of the gauge-parameter regions
depending on the relative magnitude of 	 ¼ m2=ðgTÞ2 to g at
high temperature, i.e., for gT � m or 	 � 1. Each number in
the figures corresponds to the case with same number in the text.
The light gray regions are the adequate gauge-parameter regions
for which Eq. (4.5) is satisfied, whereas the dark gray region
are not.

5As seen from Eqs. (C14) and (C19), ~Bðp;mÞ and ~B0ðp;mÞ
yield terms that are proportional to m, so C2ð!Þ, C3ð!Þ, C6ð!Þ,
and C7ð!Þ seem to yield terms that are proportional to m�1, and
the massless limit (m=T ! 0) cannot be taken. Actually, from
Eqs. (C14) and (C19), we see that the terms discussed above
cancel out. Therefore, we can take the massless limit, and the
fermion self-energy approaches the one in QED.

6These terms come from the imaginary part of ~Bð0; !;mÞ,
~B0ð0; !;mÞ, ~Bð0; !;

ffiffiffiffi
�

p
mÞ, and ~B0ð0; !;

ffiffiffiffi
�

p
mÞ, which can be

confirmed by retaining the next-to-leading term in Eqs. (C7) and
(C15). The contribution from the real parts are much smaller
than these terms.
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Im�þð0; !Þ ¼ g2

64�m2

�
!3

�
tanh

!2

4T!
þ coth

!2

4T!

�

� ð!2 þ 2m2Þð!2 �m2Þ2
!3

�
�
coth

!2 þm2

4T!
þ tanh

!2 �m2

4T!

��

’ 1

16�
g2T; (4.23)

where the first line is obtained by substituting p ¼ 0 and
� ¼ 0 in Eq. (B2). In the second line the inequality T �
! � m was used. Although this is positive and apparently
breaks the analyticity, this order of the coupling should not
be determined in the one-loop order, because the two-loop
diagrams contain contributions of order g2T. In fact, the
analyticity problem can be cured by taking into account the
two-loop diagrams.

B. 1=g2 � �� � 1 (case 2)

1. � � 1=ðg	Þ (case 2-a)
Due to the order estimate for C2ð!Þ, C4ð!Þ, and C6ð!Þ

given in Eq. (4.19), we obtain

C2ð!Þ�g

�
1

	

�
; C4ð!Þ�g�; C6ð!Þ�

�
1

	

�
; (4.24)

which is the same as Eq. (4.22). The leading term of C6ð!Þ
cancels out with that of C7ð!Þ, and the remaining terms are
of the order of g�,7 while C2ð!Þ and C3ð!Þ do not. In the
present case, however, C4ð!Þ is larger than C2ð!Þ and
C3ð!Þ, and hence C4ð!Þ dominates the gauge-dependent
terms, which should be made small. This smallness is
guaranteed when � � 1=g, which defines the adequate
gauge-parameter region; this coincides with that in case 1.
Notice that the inequality g < 	 must be assumed in this
case, otherwise the inequality �< 1=g cannot be satisfied.

2. � � 1=ðg	Þ (case 2-b)
Again, due to the order estimate in Eq. (4.19), C2ð!Þ,

C4ð!Þ, and C6ð!Þ are estimated to be

C2ð!Þ � 1

�

�
1

	

�
2
; C4ð!Þ �

�
1

	

�
; C6ð!Þ � 1

�2g2	3
:

(4.25)

Though C4ð!Þ and C7ð!Þ have the same order of magni-
tude, they do not cancel out, which can be confirmed from
Eqs. (C20) and (C26). Therefore the largest contribution is
C4ð!Þ � 1=	 � 1; the present region for the gauge pa-
rameter (� � 1=ðg	Þ) is not an adequate gauge-parameter
region.

C. �� � 1=g2 (case 3)

Here we treat the case where the gauge parameter is far
larger than 1=	g2; this case includes the unitary gauge
(� ! 1). Due to the order estimate in Eq. (4.20) for this
case, C2ð!Þ, C4ð!Þ, and C6ð!Þ are estimated to be

C2ð!Þ � 1

�

�
1

	

�
2
; C4ð!Þ �

�
1

	

�
; C6ð!Þ � 1

g2�2	3
:

(4.26)

Again, although C4ð!Þ and C7ð!Þ have the same order of
magnitude, they do not actually cancel out due to the
difference in the coefficients, which can be seen from
Eqs. (C20) and (C42). In this case, the largest contribution
is C4ð!Þ � 1=	 � 1; therefore, this region is not an ade-
quate gauge-parameter region. This also suggests that the
order of the pole in the unitary gauge is not gT.
So let us now discuss the pole in the unitary gauge. First

we assume the pole is of order m instead of gT. Using
Eqs. (4.20), (C50), and (C54), we have the following order
estimates:

C1ð!Þ � 1

	
; C2ð!Þ � � 1

�	
; C3ð!Þ � gffiffiffiffi

	
p ;

C4ð!Þ � 1

	
; C5ð!Þ � gffiffiffiffi

	
p ; C6ð!Þ �

�
1

�g	

�
2
;

C7ð!Þ � � 1

	
: (4.27)

For � ! 1, C2ð!Þ and C6ð!Þ vanish. Furthermore,

C3ð!Þ and C5ð!Þ can be also neglected, because g
ffiffiffiffi
	

p ¼
m=T � 1. The remaining parts C1ð!Þ, C4ð!Þ and C7ð!Þ
are estimated more precisely with the use of Eqs. (C20)
and (C42), as follows:

C1ð!Þ ’ 1

8	

m2

!2
; C4ð!Þ ’ 1

24	
;

C7ð!Þ ’ � 1

16	
:

(4.28)

Collecting these terms, we reach at

Cð!Þ ’ 1

48	

�
6m2

!2
� 1

�
: (4.29)

This is precisely the same as the result obtained in the
Proca formalism in the high temperature limit [8]; the
thermal mass in this case reads

! ¼
ffiffiffi
6

p
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 48	
p !	!0 ffiffiffi

6
p

m; (4.30)

which can be seen from Fig. 10 also. We have confirmed
numerically that the spectral function also approaches that
in the Proca formalism as � ! 1.

7This term comes from Im ~B0ð0; !;
ffiffiffiffi
�

p
mÞ, which can be con-

firmed from Eq. (C30). The real parts are negligible compared
with this term.
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D. Brief summary

Let us summarize and discuss the results obtained so far
in the preceding subsections for the gauge-parameter de-
pendence of the fermion propagator at high temperature.
The results are summarized in Fig. 11. We have found an
adequate gauge-parameter region as � � 1=g in which
possible gauge dependence is of higher order of the cou-
plings and hence can be neglected. We remark that this
parameter restriction should also apply to QED.

In fact, the electron self-energy in the HTL approxima-
tion in QED at the next-to-leading level in the one-loop
order reads [22,23]

�Rðp ¼ 0; !Þ ’ e2T2

8!
�0 þ e2

8�2
�0

�
! ln

T

!
� i�T

�

þ ð1� �Þ e2

8�2
�0

�
�! ln

T

!
þ 3�iT

2

�
:

(4.31)

If !� eT and �� 1=e, the third term would be the same
order as the leading term, which implies that the gauge
independence is badly broken. Conversely,, if � is much
smaller than 1=e, then the gauge-dependent part becomes
of order e2 and can be neglected; this gives an adequate
gauge-parameter region for QED.

There is a difference between QED and the massive
vector theory in the Stueckelberg formalism: The limit
� ! 1 cannot be taken in the former case because the
third term in Eq. (4.31) diverges, while it can in the latter
case. In this limit, the pole of the fermion propagator in the
latter case becomes of order m � gT.

On the other hand, small � also yields the problem; the
imaginary part of the fermion self-energy becomes positive
for � � 1, which breaks the analyticity of the self-energy.

The � dependence of the self-energy can be understood
intuitively as follows: In the Stueckelberg formalism, there
are two masses: the physical mass m and the unphysical
mass

ffiffiffiffi
�

p
m. For gT � m,

ffiffiffiffi
�

p
m, the self-energy naturally

approaches that of QED because both masses can be
neglected. By contrast, if the unphysical mass

ffiffiffiffi
�

p
m is

not smaller than gT,
ffiffiffiffi
�

p
m cannot be neglected, although

the temperature is high enough compared with the physical
mass m. In this case, the self-energy at the one-loop level
does not approach that of QED.

We also note here that in the g � 	 case, the boson mass
m cannot be taken to zero from the outset, but the self-
energy is approximately equal to that in the HTL approxi-
mation in QED as long as � � 1=g. This implies that the

value, Tg3=2, is the upper limit of the boson mass that we
can neglect.

Summarizing the situation, we see that there are three
regions of the gauge parameter: In the first region, the
theory approaches QED, and is in an adequate gauge-
parameter region. In the second region, the theory ap-
proaches QED, but is out of an adequate gauge-parameter

region. In the third region, the theory does not approach
QED, and is out of an adequate gauge-parameter region.
We conclude that the gauge parameter should be chosen
to be 1 & � � 1=g in numerical calculations in this
formalism.

V. SUMMARYAND CONCLUDING REMARKS

We have investigated the spectral properties of a fermion
coupled with a massive vector boson in the whole tem-
perature (T) region at one-loop order. The vector boson
with a mass (m) is introduced as a Uð1Þ gauge boson in the
Stueckelberg formalism so that the high T limit, or equiv-
alently the massless limit in the sense that m=T ! 0, can
be taken8: We have successfully analyzed and clarified the
characteristics of the spectral properties of the fermion in
the distinct three regions of T, i.e., (I) T � m, (II) T �m,
and (III) T � m regions, in a unified way. We have also
carefully examined the possible gauge dependence of the
spectral properties of the fermion in the respective three T
regions, separately.
In region (I), the fermion spectral properties hardly

change from those in the vacuum, which are gauge inde-
pendent. In region (II), the fermion spectral function gets to
have a three-peak structure in the small momentum region
with supports in the positive, zero, and negative energy
regions; the three-peak structure becomes prominent when
T ’ 2m for g ¼ 0:5. We have confirmed numerically that
the fermion poles and hence the fermion spectral function
shows virtually no dependence on the gauge parameter (�)
for T �m. It is thus natural that the similar three-peak
structure of the fermion spectral function was obtained in
the Proca formalism for the massive vector field for T �m
[8], since the Proca formalism exactly corresponds to the
unitary gauge � ! 1. Conversely, the three-peak structure
found in [8] is not an artifact by a special choice of the
gauge and is physical.
It is interesting that the spectral function of a fermion

coupled with a scalar massive boson also shows a similar
three-peak structure for T �m at the one-loop level [8,9].
The present analysis has established that a fermion coupled
with a massive boson with a mass m has a three-peak
structure for small momenta with supports in the positive,
vanishing, and negative energy regions at temperatures
comparable with the boson mass, irrespective of the type
of the boson, at the one-loop order.
For T � m [region (III)], the fermion spectral function

tends to have distinct two peaks precisely corresponding to
those seen in QED in the HTL approximation [1–4]. It
means that our formalism nicely describes the spectral
function of the fermion coupled with a massive vector
boson even in the high T region. There is, however, a tricky
point related to a possible gauge dependence. We have

8As is mentioned in Introduction, the Proca formalism does
not yield sensible results for T � m [8,18,19].
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found that there exists an adequate region of the gauge
parameter � in the high-T region for the perturbation
theory at finite T: If � is of the order 1, the analysis at
the one-loop order does not create a problem and is reli-
able, keeping the positivity of the spectral function and so
on; otherwise, however, these fundamental properties may
be lost. This is because two mass parameters exist, i.e., the
vector-boson mass m and the ghost mass

ffiffiffiffi
�

p
m which is

inherently in the Stueckelberg formalism. Thus, the precise
high-T region should be defined by the two conditions,
T � m and T � ffiffiffiffi

�
p

m. Our extensive analytic study has
proven this observation and shown that when � � 1=g
(g is the coupling constant), the one-loop analysis is reli-
able even in the region (III). Accordingly, if the unitary
gauge (� ! 1) is adopted for the massive vector boson,
the one-loop analysis cannot be valid for T � m, as is
shown in a different context [18,19].

Our numerical calculation has shown that there still
remains a peak at the origin in the !-jpj plane, though
with a faint strength even in region (III); this is in contrast
to QED in the HTL approximation where such a peak is
absent. Although it is an interesting possibility that the
three-peak structure persists at the high-T region and even
in QED, a sensible analysis of the spectral properties
around such a low-energy region requires a resummed
perturbation theory to deal with possible pinch singular-
ities [20]. Thus, we leave an analysis of the spectral prop-
erties in the very low-energy region to a future work and
hope to report it elsewhere [21].

As was mentioned in the Introduction, we can think of
some physical situations where the present analysis can be
relevant, since massive vector bosons appear at finite T in
various physical systems. In QCD, vector bosons or vector-
bosonic modes may decrease their masses in association
with the restoration of chiral symmetry at finite T [13]. It
would be not surprising if vector-bosonic modes exist even
in the deconfined and chiral symmetric phase in the vicin-
ity of the critical temperature Tc, since the existence of
other hadronic modes [7,24,25] and bound states [26] are
suggested in that temperature region. A vector-type glue
ball may also exist in such a system. Then the present
analysis would suggest that the quark spectra can be
largely affected in such a system where the boson mass
is comparable to T in the order of magnitude. In the
electroweak theory, the dispersion relation of neutrinos at
high T may possibly be affected by the weak bosons the
masses of which change with T [14]. One of the findings of
the present analysis tells us that the one-loop analysis in the
unitary gauge cannot be applicable whenm=T � 1, which
includes the vicinity of the critical point.
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APPENDIX A: THE CORRESPONDENCE
BETWEEN THE STUECKELBERG FORMALISM

AND THE ABELIAN-HIGGS MODEL

In this Appendix, we briefly show that the Abelian-
Higgs model is reduced to the Uð1Þ gauge theory with a
massive gauge boson in the Stueckelberg formalism
[11,17].
The Lagrangian of the Abelian-Higgs model reads

L Higgs ¼ �1
4F

��F�� þ jð@� � ieA�Þ�j2; (A1)

with F�� ¼ @�A� � @�A�. Here A� and � denote the

vector and the Higgs field, respectively.
We fix the absolute value of the Higgs field � and use

the following polar representation:

� ¼ m

e
ffiffiffi
2

p exp

�
ieBðxÞ
m

�
; (A2)

with j�j ¼ m=ðe ffiffiffi
2

p Þ. We remark that the scalar field B,
which will turn to be identified with the Stueckelberg field,
is introduced as the phase of �. Then, the Lagrangian
becomes

L Higgs ¼ � 1

4
F��F�� þm2

2

�
A� � 1

m
@�B

�
2
; (A3)

which exactly gives the free Lagrangian of the massive
vector field in the Stueckelberg formalism and its interac-
tion term with the Stueckelberg field B given in Eq. (2.1) in
the text. This is what we wanted to show.

APPENDIX B: CALCULATION OF
THE FERMION SELF-ENERGY

Here we derive Eq. (2.21) in the text. We first recall that
the retarded self-energy �Rðp; !Þ in the one-loop approxi-
mation is given from Eq. (2.18) by the analytic continu-
ation, i!m ! !þ i� � p0; see Eq. (2.10). Then its
imaginary part reads

Im�Rðp; !Þ ¼ �2g2�� Im ~B�ðp; !;mÞ

þ g2

m2
½pðp2ðIm ~Bðp; !;

ffiffiffiffi
�

p
mÞ � Im ~Bðp; !;mÞÞ

�m2ð�Im ~Bðp; !;
ffiffiffiffi
�

p
mÞ � Im ~Bðp; !;mÞÞÞ

� p2��ðIm ~B�ðp; !;
ffiffiffiffi
�

p
mÞ � Im ~B�ðp; !;mÞÞ
; (B1)

where p2 ¼ !2 � jpj2. By applying the projection opera-
tor for the particle sector, we have
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Im�þðp; !Þ ¼ 1

2
Tr½Im�Rðp; !Þ�þðpÞ�0


¼ �2g2ðIm ~B0ðp; !;mÞ � p̂iIm ~Biðp; !;mÞÞ þ g2

m2
½ð!� jpjÞðp2ðIm ~Bðp; !;

ffiffiffiffi
�

p
mÞ � Im ~Bðp; !;mÞÞ

�m2ð�Im ~Bðp; !;
ffiffiffiffi
�

p
mÞ � Im ~Bðp; !;mÞÞÞ � p2ðIm ~B0ðp; !;

ffiffiffiffi
�

p
mÞ � Im ~B0ðp; !;mÞ

� p̂iIm ~Biðp; !;
ffiffiffiffi
�

p
mÞ þ p̂iIm ~Biðp; !;mÞÞ
: (B2)

Here we have used the relation Tr½p�þðpÞ�0
=2 ¼ !�
jpj and Tr½ ~B�ðp; !;mÞ���þðpÞ�0
 ¼ ~B0ðp; !;mÞ �
p̂i

~Biðp; !;mÞ. Notice that Im ~Bðp; !;mÞ and

Im ~B�ðp; !;mÞ contain 
ðsEf � tEb �!Þ with s, t ¼
�1, Ef ¼ jkj, and Eb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp� kÞ2p

, while

Im ~Bðp; !;
ffiffiffiffi
�

p
mÞ and Im ~B�ðp; !;

ffiffiffiffi
�

p
mÞ contain 
ðsEf �

tE0
b �!Þ with E0

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ ðp� kÞ2p

. Collecting the

terms which contain 
ðsEf � tEb �!Þ, we have
ð
ðsEf� tEb�!ÞtermÞ

¼g2
Z d3k

ð2�Þ3
X

s;t¼�1

st�

4EfEb


ðsEf� tEb�!Þ

�ðfðsEfÞþnðsEf�!ÞÞ
�
�2ðsEf� p̂ �kÞ

� 1

m2
ð!�jpjÞðp2�m2Þþ 1

m2
p2ðsEf� p̂ �kÞ

�
: (B3)

Here we have used the following formulae;

Im ~Bðp; !;mÞ ¼
Z d3k

ð2�Þ3
X

s;t¼�1

st�

4EfEb


ðsEf � tEb �!Þ

� ðfðsEfÞ þ nðsEf �!ÞÞ; (B4)

Im ~B0ðp; !;mÞ ¼
Z d3k

ð2�Þ3
X

s;t¼�1

st�

4EfEb


ðsEf � tEb �!Þ

� ðfðsEfÞ þ nðsEf �!ÞÞsEf; (B5)

Im ~Biðp;!;mÞ¼
Z d3k

ð2�Þ3
X

s;t¼�1

st�

4EfEb

ki
ðsEf� tEb�!Þ

�ðfðsEfÞþnðsEf�!ÞÞ: (B6)

Using the constraint p̂ � k ¼ Ef cos� ¼ ðm2 � p2 þ
2!sEfÞ=2jpj posed by the delta function, we have

ð
ðsEf � tEb �!ÞtermÞ ¼ g2
Z d3k

ð2�Þ3
X

s;t¼�1

st�

4EfEb


ðsEf � tEb �!ÞðfðsEfÞ þ nðsEf �!ÞÞ

�
�
p2 �m2

2jpjm2
ðð!� jpjÞ2 � 2m2Þ þ sEf

2m2 � p2

m2jpj ð!� jpjÞ
�

¼ g2

32�m2jpj2
Z 1

0
dEf

X
s;t¼�1

st½ðp2 �m2Þðð!� jpjÞ2 � 2m2Þ þ 2sEfð!� jpjÞð2m2 � p2Þ


� ðfðsEfÞ þ nðsEf �!ÞÞ
Z eþ

e�
dEb
ðsEf � tEb �!Þ; (B7)

with e� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj � EfÞ2 þm2

q
. Here the momentum inte-

gral is converted to that for the particle energies through
the formula

Z
d3k ¼ 2�

jpj
Z 1

0
dEfEf

Z eþ

e�
dEbEb: (B8)

We now evaluate the integral separately for the timelike
and the spacelike region. For the timelike region (j!j>
jpj), we have

ð
ðsEf � tEb �!ÞtermÞ ¼ g2

32�jpj2m2

Z E�
f

Eþ
f

dEfðfðEfÞ

þ nðEf �!ÞÞ½ð�p2 þm2Þððjpj �!Þ2 � 2m2Þ
þ 2ðp2 � 2m2ÞEfð!� jpjÞ
; (B9)

with E�
f � ðp2 �m2Þ=ð2ð!� jpjÞÞ. For the spacelike re-

gion (j!j< jpj), we have
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ð
ðsEf � tEb �!ÞtermÞ ¼ g2

32�jpj2m2

Z E�
f

Eþ
f

dEfðfðEfÞ

þ nðEf �!ÞÞ½ð�p2 þm2Þððjpj �!Þ2 � 2m2Þ

þ 2ðp2 � 2m2ÞEfð!� jpjÞ
 � g2

32�jpj2m2

� ½ðp2 � 2m2Þð!� jpjÞ�2T2

þ!½2m4 � p2ðjpjð!� jpjÞ þm2Þ

: (B10)

Here we have used the integral formulae

Z 1

�1
dEfðfðEfÞ þ nðEf �!ÞÞ ¼ �!; (B11)

Z 1

�1
dEfðfðEfÞ þ nðEf �!ÞÞEf ¼ �2T2

2
�!2

2
: (B12)

Combining Eqs. (B9) and (B10), we have

ð
ðsEf � tEb �!ÞtermÞ ¼ g2

32�jpj2m2

Z E�
f

Eþ
f

dEfðfðEfÞ

þ nðEf �!ÞÞ½ð�p2 þm2Þððjpj �!Þ2 � 2m2Þ

þ 2ðp2 � 2m2ÞEfð!� jpjÞ
 � g2

32�jpj2m2
�ð�p2Þ

� ½ðp2 � 2m2Þð!� jpjÞ�2T2

þ!½2m4 � p2ðjpjð!� jpjÞ þm2Þ

: (B13)

Next, we collect the terms that contain 
ðsEf �
tE0

b �!Þ;

ð
ðsEf � tE0
b �!ÞtermÞ ¼ g2

32�m2jpj2
Z 1

0
dEf

X
s;t¼�1

stð!� jpjÞ½�ð!� jpjÞðp2 � �m2Þ þ 2p2sEfÞ


� ðfðsEfÞ þ nðsEf �!ÞÞ
Z e0þ

e0�
dE0

b
ðsEf � tE0
b �!Þ

¼ � g2

32�jpj2m2

Z E0�
f

E0þ
f

dEfðfðEfÞ þ nðEf �!ÞÞ½ð�p2 þm2�Þðjpj �!Þ2 þ 2p2Efð!� jpjÞ


þ g2

32�jpj2m2
�ð�p2Þ½p2ð!� jpjÞ�2T2 þ!ð!� jpjÞð�!p2 � ð!� jpjÞð�p2 þm2�ÞÞ
;

(B14)

where e0� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj � EfÞ2 þ �m2

q
and E0�

f � ðp2 �
�m2Þ=ð2ð!� jpjÞÞ. Combining Eqs. (B13) and (B14),
we arrive at Eq. (2.21).

APPENDIX C: POWER COUNTING OF
THE FERMION SELF-ENERGY

In this Appendix, we make an order estimate of
~Bðp; !;mÞ and ~B0ðp; !;mÞ used in the analysis done in
Sec. IV. The estimate will be made separately for the
following four limiting cases: T � ! � m, T � m �
!, m � T � !, and T � !�m. For simplicity, we set
jpj ¼ 0.

We start with ~Bð0; i!m;mÞ and ~B0ð0; i!m;mÞ in the
imaginary time formalism:

~Bð0; i!m;mÞ ¼
Z d3k

ð2�Þ3
X

s;t¼�1

st

4EbEf

1

sEf � tEb � i!m

� ðfðsEfÞ þ nðtEbÞÞ; (C1)

~B0ð0; i!m;mÞ ¼
Z d3k

ð2�Þ3
X

s;t¼�1

st

4EbEf

� sEffðsEfÞ þ ðtEb þ i!mÞnðtEbÞ
sEf � tEb � i!m

: (C2)

Performing the analytic continuation and dropping T ¼ 0
part, we get the corresponding retarded functions, the real
parts of which read

Re ~Bð0;!;mÞT�0

¼P
Z d3k

ð2�Þ3
X

s;t¼�1

st

4EbEf

1

sEf� tEb�!
ðfðsEfÞþnðtEbÞÞ

�Re ~Bð0;!;mÞT¼0

¼ 1

2�2
P
Z 1

0
dEf

�
EffðEfÞ !2�m2

ð!2�m2Þ2�4E2
f!

2

�nðEbÞ
E2
f

Eb

m2þ!2

ð!2�m2Þ2�4E2
f!

2

�
; (C3)
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Re ~B0ð0; !;mÞT�0

¼ P
Z d3k

ð2�Þ3
X

s;t¼�1

st

4EbEf

sEffðsEfÞ þ ðtEb þ!ÞnðtEbÞ
sEf � tEb �!

� Re ~B0ð0; !;mÞT¼0

¼ !

2�2
P
Z 1

0
dEf

�
2E3

ffðEfÞ 1

ð!2 �m2Þ2 � 4E2
f!

2

þ nðEbÞ
E2
f

Eb

2E2
f þm2 �!2

ð!2 �m2Þ2 � 4E2
f!

2

�
: (C4)

Here we have defined T � 0 parts as ~Bð0;!;mÞT�0�
~Bð0;!;mÞ� ~Bð0;!;mÞT¼0 and ~B0ð0; !;mÞT�0 �
~B0ð0; !;mÞ � ~B0ð0; !;mÞT¼0. In the evaluation of these
integrals, we have to carefully separate and deal with the
contributions from the soft region (Ef � T) and the hard

region (Ef � T) unlike the calculation of the leading order

of the HTL approximation, because the contribution from
the soft region can be much larger than that from the hard
region in some limits.

From Eqs. (B4) and (B5), the finite temperature parts of
Im ~Bð0; !;mÞ and Im ~B0ð0; !;mÞ are calculated to be

Im ~Bð0; !;mÞT�0

¼ 1

8�

Z 1

0
dEf

Ef

Eb

½�ðfðEfÞ þ nðEbÞÞ
ðEf � Eb þ!Þ
� ðfðEfÞ � nðEbÞÞ
ðEf þ Eb �!Þ


¼ !2 �m2

16�!2

�
sgnðm2 �!2Þf

���������
m2 �!2

2!

��������
�

þ n

�
m2 þ!2

2!

��
; (C5)

and

Im ~B0ð0; !;mÞT�0

¼ � 1

8�

Z 1

0
dEf

E2
f

Eb

½�ðfðEfÞ þ nðEbÞÞ
ðEf � Eb þ!Þ
þ ðfðEfÞ � nðEbÞÞ
ðEf þ Eb �!Þ


¼ ð!2 �m2Þ2
32�!3

�
sgnðm2 �!2Þf

���������
m2 �!2

2!

��������
�

þ n

�
m2 þ!2

2!

��
; (C6)

respectively. In the first lines, the positiveness of ! has
been taken into account.

1. T � ! � m

a. ~Bð0; !;mÞ
We first estimate the imaginary part. From Eq. (C5), we

have

Im ~Bð0; !;mÞT�0 ’ 1

16�

�
�f

�
!

2

�
þ n

�
!

2

��
¼ 1

8�
nð!Þ:
(C7)

Here we have utilized the inequality ! � m. Using the
approximate formula

nðxÞ ’ T=x for x � T; (C8)

we get

Im ~Bð0; !;mÞT�0 ’ 1

8�

T

!
: (C9)

The real part is given by Eq. (C3). To evaluate it, it is
found convenient to introduce an intermediate scale T�
which satisfies the relation T � T� � ! so that T� sepa-
rates the hard region from the soft region. The contribution

from Ef > T�, which is denoted by Re ~Bð0; !;mÞEf>T�
T�0 , is

evaluated to be

Re ~Bð0; !;mÞEf>T�
T�0 ’ � 1

8�2
P
Z 1

T�
dEf

1

Ef

ðfðEfÞ � nðEfÞÞ:

(C10)

Here we have used the inequalities ! � m and Ef >

T� � ! in the hard region. We get the following expres-
sion by integrating by part:

Re ~Bð0; !;mÞEf>T�
T�0 ’ � 1

8�2

�
�½fðEfÞ � nðEfÞ
1T�

þ P
Z 1

T�
dEf

1

Ef

d

dEf

EfðfðEfÞ � nðEfÞÞ
�
: (C11)

By inserting Eq. (C8) and fðxÞ ’ 1=2 for x � 1, we see
that the first term is of the order of T=T�. It is easily
confirmed that the second term is of the order of
lnðT�=TÞ by performing partial integration again, so the
second term can be neglected;

Re ~Bð0; !;mÞEf>T�
T�0 ’ 1

8�2

T

T� : (C12)

On the other hand, we have for the contribution from

Ef < T�, which is denoted by Re ~Bð0; !;mÞEf<T�
T�0 :

Re ~Bð0; !;mÞEf<T�
T�0 ’ � 1

2�2
P
Z T�

0
dEf

TE2
f

E2
f þm2

� !2

!4 � 4E2
f!

2
: (C13)

Here again, Eq. (C8) has been inserted and the inequality
! � m has been taken into account. The term which has
fðEfÞ has been neglected since it is much smaller than

nðEbÞ. Performing partial fraction decomposition and uti-
lizing the inequality ! � m, we get

Re ~Bð0; !;mÞEf<T�
T�0 ’ � T

8�2T� þ
Tm

4�!2
: (C14)
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We see that the imaginary part, Eq. (C9), is much larger
than any term of the real part, Eqs. (C12) and (C14).

A remark is in order here: In the present analysis, we
have considered only the leading term in the high tempera-
ture expansion as in [16,19], where the simple approximate
formula nðxÞ ’ T=x is adopted. In fact, all the analyses
given in this Appendix will be based on this formula. Of
course, one could include the next-to-leading term by using
the formula nðxÞ ’ T=x� 1=2, which would lead to the
logarithmic terms derived in [22,23]. The inclusion of such
terms is beyond the scope of this work.

b. ~B0ð0; !;mÞ
The imaginary part of ~B0ð0; !;mÞT�0 is given by

Eq. (C6), which is estimated to be

Im ~B0ð0; !;mÞT�0 ’ T

16�
: (C15)

The derivation of this expression is the same as that of Eq.
(C9).

The real part is given by Eq. (C4). We introduce T�
which satisfies T � T� � !, as before. The contribution
from the Ef > T� region, which is written as

Re ~B0ð0; !;mÞEf>T�
T�0 , is evaluated as follows by inserting

Eb ’ Ef and Ef � ! � m again:

Re ~B0ð0;!;mÞEf>T�
T�0 ’ !

4�2

Z 1

T�
dEfEf

�1

!2
ðfðEfÞþnðEfÞÞ

¼� 1

4�2!

�Z 1

0
dEf �

Z T�

0
dEf

�

�EfðfðEfÞþnðEfÞÞ: (C16)

Inserting Eq. (C8), we obtain

Re ~B0ð0; !;mÞEf>T�
T�0 ’ � T2

16!
þ 1

4�2!

Z T�

0
dEfT

¼ � T2

16!
þ T�T

4�2!
: (C17)

The contribution from Ef < T� region, represented by

Re ~B0ð0; !;mÞEf<T�
T�0 , is estimated as follows by using

Eq. (C8) and the inequality ! � m:

Re ~B0ð0; !;mÞEf<T�
T�0

’ !

2�2
P
Z T�

0
dEfT

E2
f

E2
f þm2

2E2
f �!2

!4 � 4E2
f!

2
: (C18)

Utilizing the inequalities T � T� � !,

Re ~B0ð0; !;mÞEf<T�
T�0 is evaluated as follows by utilizing

partial fraction decomposition:

Re ~B0ð0; !;mÞEf<T�
T�0 ’ � TT�

4�2!
� T

4�2!

�
��mþ !2

4T�

�
:

(C19)

Since the largest term is �T2=ð16!Þ, we have

Re ~B0ð0; !;mÞT�0 ’ � T2

16!
; (C20)

which is much larger than the imaginary part. A few re-
marks are in order here: the last formula leads to the well-
known result of theHTLapproximation inQED. It is easy to
understand if we remember that we can neglectm and apply
the HTL approximation in this situation, T � ! � m.
From Eqs. (4.12) and (4.13), it seems that Tm=ð4�!Þ in

Eq. (C19) yields terms which are of the order of g2T!=m
and g2T!

ffiffiffiffi
�

p
=m in�þð0; !Þ, which implies that the mass-

less limit (m=T ! 0) cannot be taken. However, from
Eq. (C14), we see that these terms are canceled by terms
which come from Eqs. (4.8) and (4.9).
The results of this section, Eqs. (C12), (C14), (C17), and

(C19), reproduce leading term of asymptotic form of some
integrals used in [23] since the QED limit,m=T,m=! ! 0,
is included in the limit considered in this section, T �
! � m. Results in other sections are not related to them
because their situations are far from QED.

2. T � m � !

a. ~Bð0; !;mÞ
The imaginary part of ~Bð0; !;mÞT�0 is given by

Eq. (C5), which is estimated as follows:

Im ~Bð0; !;mÞT�0 ’ �m2

16�!2

�
f

�
m2

2!

�
þ n

�
m2

2!

��

¼ �m2

8�!2
exp

�
m2

2!T

�
n

�
m2

!

�

’
8><
>:

�m2

8�!2 exp

�
� m2

2!T

�
ðm2 � !T caseÞ

� T
8�! ðm2 � !T caseÞ:

(C21)

In the first line the inequality m � ! has been taken into
account, while in the second line, either m2 � !T or
m2 � !T has been used.
Next, we estimate the real part by separating the cases

m2 � !T and !T � m2.
(i) m2 � !T case

We begin with Eq. (C3). We again introduce an
intermediate scale T� satisfying T � T� � m. The
contribution from Ef > T� is evaluated as follows:

Re ~Bð0; !;mÞEf>T�
T�0

’ � 1

2�2m2

Z 1

T�
dEfEfðfðEfÞ þ nðEfÞÞ; (C22)

where the relation Eb ’ Ef � m � ! has been uti-

lized and the contribution fromEf * m2=! has been

neglected because it is suppressed by the Boltzmann
factor � expð�m2=ð!TÞÞ. Dividing the interval of
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the integral as in Eq. (C16), the following expression
is obtained:

Re ~Bð0;!;mÞEf>T�
T�0

’� 1

2�2m2

�Z 1

0
dEf�

Z T�

0
dEf

�
EfðfðEfÞþnðEfÞÞ

’� T2

8m2
þ T�T
2�2m2

: (C23)

In the last line, we have inserted Eq. (C8). On the
other hand, using Eq. (C8) and m � !, the contri-
bution from Ef < T� is estimated to be

Re ~Bð0; !;mÞEf<T�
T�0 ’ �m2T

2�2
P
Z T�

0
dEf

E2
f

E2
f þm2

� 1

m4 � 4E2
f!

2
: (C24)

Utilizing the inequalities T� � m2=! and m � !,
we obtain

Re ~Bð0; !;mÞEf<T�
T�0 ’ � TT�

2�2m2
þ T

4�m
; (C25)

which is obtained by partial fraction decomposition.
Taking only the largest term, we have

Re ~Bð0; !;mÞT�0 ’ � T2

8m2
; (C26)

which dominates the imaginary part.
(ii) m2 � !T case

We introduce T�, which is an intermediate scale
satisfying T � T� � m2=!. From Eq. (C3), we
have for the contribution from Ef > T�

Re ~Bð0; !;mÞEf>T�
T�0

’ m2

8�2!2

Z 1

T�
dEf

1

Ef

ðfðEfÞ þ nðEfÞÞ

’ m2T

8�2!2T� : (C27)

In the first line, we have used the inequalities m �
! and Eb ’ Ef > T� � m2=!, while in the second

line an approximation similar to that after Eq. (C11)
has been utilized.
Substituting Eq. (C8), the contribution from Ef <

T� is estimated to be

Re ~Bð0; !;mÞEf<T�
T�0

’ �m2T

2�2
P
Z T�

0
dEf

E2
f

E2
f þm2

1

m4 � 4E2
f!

2

’ � m2T

8�2!2T� þ
T

4�m
: (C28)

In the second line the inequality T� � m2=! was
used. Now we see that every term in the real part is

much smaller than the imaginary part. Combining
these results, we have

~Bð0; !;mÞT�0 ’

8>>><
>>>:
� 1

8

�
T
m

�
2 ðm2 � !T caseÞ

� i
8�

T
! ðm2 � !T caseÞ:

(C29)

b. ~B0ð0; !;mÞ
First, let us estimate the imaginary part of

~B0ð0; !;mÞT�0 given by Eq. (C6):

Im ~B0ð0; !;mÞT�0

’

8>>><
>>>:

m4

16�!3 exp

�
� m2

2!T

�
ðm2 � !T caseÞ

m2T
16�!2 ðm2 � !T caseÞ:

(C30)

We have arrived at this expression in the same way as in
Eq. (C21).
(i) m2 � !T case

In this case, the real part of ~B0ðp; !;mÞT�0 which is
given by Eq. (C4) is evaluated as follows. Using an
intermediate scale T� satisfying T � T� � m, we
have for the contribution from Ef > T�

Re ~B0ð0; !;mÞEf>T�
T�0

’ !

�2m4

Z 1

T�
dEfE

3
fðfðEfÞ þ nðEfÞÞ; (C31)

where the contribution from Ef * m2=! has been

neglected since it is suppressed by the Boltzmann
factor � expð�m2=ð!TÞÞ. Also the inequality
m � ! has been taken into account. Dividing the
interval of the integral as in Eq. (C16), we obtain

Re ~B0ð0; !;mÞEf>T�
T�0

’ !

�2m4

�Z 1

0
dEf �

Z T�

0
dEf

�
E3
fðfðEfÞ þ nðEfÞÞ

’ �2

8

!T4

m4
�!TT�3

3�2m4
: (C32)

In the last line, we have substituted Eq. (C8).
Next, we estimate the contribution from Ef < T�.
Since the leading terms cancel out, we retain !2 in
Eq. (C4). If we define �2� � !2 �m2, the contri-
bution from Ef < T� is estimated as follows:

Re ~B0ð0; !;mÞEf<T�
T�0 ’ !T

2�2
P
Z T�

0
dEf

E2
f

E2
f þm2

� 2E2
f ��2�

�4� � 4E2
f!

2
; (C33)
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where we have used Eq. (C8). Performing partial
fraction decomposition, we have

Re ~B0ð0; !;mÞEf<T�
T�0

’ � T

4�2!
P
Z T�

0
dEf

�
1� m2

E2
f þm2

2!2

�2þ

� �6�
4!2�2þ

1

E2
f ��4�=ð4!2Þ

�

’ � T

4�2!

�
��!2

m
þ T� 2!

2

�2þ
þ 4

3

!2T�3

�2þ�2�

�
: (C34)

In the second line the inequality T� � m has been
utilized. Notice that because of canceling out of the
leading terms, we have to retain the next-to-leading
term in the expansion of lnð1þ 2!T�=�2�Þ. The
largest term is the first term of Eq. (C32), so

Re ~B0ð0; !;mÞT�0 ’ �2

8

!T4

m4
; (C35)

which is found to be much larger than the imaginary
part.

(ii) m2 � !T case
The real part is given by Eq. (C4). As is before, we
introduce an intermediate scale T� satisfying T �
T� � m2=! � m. Then

Re ~B0ð0; !;mÞEf>T�
T�0 ’ � T2

16!
þ T�T

4�2!
: (C36)

This expression has been obtained in the same
procedure as in Eqs. (C16) and (C17).

The contribution from Ef < T� is estimated as follows.

Using Eq. (C8) and the inequality m � !, we have

Re ~B0ð0; !;mÞEf<T�
T�0 ’ !

2�2
P
Z T�

0
dEfT

E2
f

E2
f þm2

� 2E2
f þm2

m4 � 4E2
f!

2

’ � TT�

4�2!
þ m4T

16�2!3T� : (C37)

In the last line we have utilized the inequality T� �
m2=! � m. Since T� � m4=ð!2TÞ, the largest term is
found to be �T2=ð16!Þ, so we have

Re ~B0ð0; !;mÞT�0 ’ � T2

16!
: (C38)

This is much larger than the imaginary part.
Combining these results, we have

~B0ð0; !;mÞT�0 ’
8><
>:

�2

8
!T4

m4 ðm2 � !T caseÞ
� T2

16! ðm2 � !T caseÞ:
(C39)

3. m � T � !

a. ~Bð0; !;mÞ
We start with an estimate of the imaginary part of

~Bð0; !;mÞT�0 given by Eq. (C5). For m � T � !, we
have

Im ~Bð0; !;mÞT�0 ’ � m2

8�!2
exp

�
� m2

2!T

�
: (C40)

The derivation of this expression is almost the same as that
of Eq. (C21) in the m2 � !T case. The real part of
~Bð0; !;mÞT�0 given by Eq. (C3) is estimated as follows:

Re ~Bð0; !;mÞT�0 ’ 1

2�2
P
Z 1

0
dEfEffðEfÞ �m2

m4 � 4E2
f!

2
:

(C41)

Here we have used the inequality m � ! and nðEbÞ has
been neglected because of the suppression factor by
expð�m=TÞ. Notice that the contribution from Ef *

m2=! � T is negligible owing to the suppression factor
by fðEfÞ. Then, we see that the denominator of the inte-

grand can be approximated as m4 � 4E2
f!

2 ’ m4. Thus,

we have

Re ~Bð0; !;mÞT�0 ’ �1

2�2m2
P
Z 1

0
dEfEffðEfÞ

¼ � T2

24m2
; (C42)

which is found to dominate the imaginary part.

b. ~B0ð0; !;mÞ
We estimate the imaginary part of ~B0ð0; !;mÞT�0,

which is given by Eq. (C6). Utilizing the same procedure
as in Eq. (C40), we have

Im ~B0ð0; !;mÞT�0 ’ m4

16�!3
exp

�
� m2

2!T

�
: (C43)

The real part, which is given by Eq. (C4), is estimated as
follows:

Re ~B0ð0; !;mÞT�0 ’ !

�2
P
Z 1

0
dEfE

3
ffðEfÞ 1

m4 � 4E2
f!

2
:

(C44)

Here we have utilized the inequalitym � ! and neglected
nðEbÞ since its contribution is suppressed by the factor
expð�m=TÞ. Following the procedure used in obtaining
Eq. (C42), we have

Re ~B0ð0; !;mÞT�0 ’ !

�2m4

Z 1

0
dEfE

3
ffðEfÞ

¼ 7�2

120

!T4

m4
: (C45)

One sees that this term dominates Im ~B0ð0; !;mÞT�0.
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4. T � !�m

a. ~Bð0; !;mÞ
We start with an estimate of the imaginary part of

~Bð0; !;mÞT�0, which is given by Eq. (C5). Utilizing the
inequality T � !�m and substituting Eq. (C8), we have

Im ~Bð0; !;mÞT�0 ’ T

8�!

!2 �m2

!2 þm2
� T

!
: (C46)

In the evaluation of the real part, we introduce T� satisfy-
ing T � T� � !. From Eq. (C3), we arrive at the follow-
ing expression by using the inequalities Eb � Ef � !, m:

Re ~Bð0; !;mÞEf>T�
T�0

’ � 1

8�2!2
P
Z 1

T�
dEf

1

Ef

ð�2�fðEfÞ ��2þnðEfÞÞ

’ �2þ
8�2!2

T

T� ; (C47)

with�2� � !2 �m2. In the last linewe have performed the
partial integration and the order estimate as we did for
Eq. (C11).

Inserting Eq. (C8), the contribution from Ef < T� is

estimated to be

Re ~Bð0; !;mÞEf<T�
T�0 ’ T�2þ

8�2!2
P
Z T�

0
dEf

E2
f

E2
f þm2

� 1

E2
f ��4�=ð4!2Þ : (C48)

Using the inequality T � T� � !�m and carrying out
partial fraction decomposition, the following estimation is
obtained:

Re ~Bð0; !;mÞEf<T�
T�0 ’ � T

8�2!2

�4�
�2þT� þ

m

�2þ

T

4�
� T

!
:

(C49)

We see that both of the real part and the imaginary part are
of the order of T=!;

~Bð0; !;mÞT�0 � T

!
: (C50)

b. ~B0ð0; !;mÞ
We make an order estimate of the imaginary part of

~B0ð0; !;mÞT�0 given by Eq. (C6). Repeating the same
derivation leading to Eq. (C46), we have

Im ~B0ð0; !;mÞT�0 ’ T

16�!2

ðm2 �!2Þ2
m2 þ!2

� T: (C51)

From Eq. (C4), we estimate the contribution from the
Ef > T� region to its real part as follows:

Re ~B0ð0; !;mÞEf>T�
T�0 ’ � T2

16!
þ T�T

4�2!
: (C52)

Here we have introduced T� which satisfies T � T� � m,
and used the same approximations as that adopted in
Eqs. (C16) and (C17).
On the other hand, the contribution from Ef < T� is

estimated as follows by using Eq. (C8):

Re ~B0ð0; !;mÞEf<T�
T�0

’ !

2�2
P
Z T�

0
dEfT

E2
f

E2
f þm2

2E2
f ��2�

�4� � 4E2
f!

2

’ � T

4�2!

�
T� �m

�

2
þ�2�

2

�
�2�
2!2

� 1

��
� 1

T�

�

þm2�2�
�2� � 2!2

�4� þ 4m2!2

�
m
�

2
þ 1

T�

��
; (C53)

with �2� � !2 �m2. In the last line, the inequality T� �
!�m has been utilized and partial fraction decomposi-
tion has been performed. Since the largest term is
�T2=ð16!Þ in Eq. (C52), we have

Re ~B0ð0; !;mÞT�0 ’ � T2

16!
; (C54)

which is much larger than the imaginary part.
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